I also added this to the Maxima bug report

El lunes, 31 de octubre de 2022 a las 10:44:12 UTC+1, Frédéric Chapoton 
escribió:

> amusingly, one can see that some power of 2 is lurking around :
>
> (%i36) expand(diff(integrate(x*log(x)**13/(1+x**2),x),x));                
>                                           13
>                                 4096 x log  (x)
> (%o36)                          ---------------
>                                       2
>                                   13 x  + 13
>
> Le dimanche 30 octobre 2022 à 23:49:31 UTC+1, pvit...@gmail.com a écrit :
>
>> Ok, thanks a lot. I already reported the bug. 
>>
>> El domingo, 30 de octubre de 2022 a las 10:27:23 UTC+1, Frédéric Chapoton 
>> escribió:
>>
>>> The factor-2 problem is also present for the integral with no bounds. 
>>> Please report in maxima's bug reporting site.
>>>
>>> (%i20) integrate(x*log(x)^4/(x^2 + 1),x);
>>>                      4         2
>>>                 2 log (x) log(x  + 1)           2                    2
>>> (%o20) - (3 ((- ---------------------) + li (- x ) - 2 log(x) li (- x )
>>>                           3                5                    4
>>>                                                              3           
>>> 2
>>>                                                         4 log (x) li (- 
>>> x )
>>>                                        2           2                2
>>>                                 + 2 log (x) li (- x ) - 
>>> -------------------))/2
>>>                                               3                  3
>>> (%i21) diff(%,x);  
>>>                                          4
>>>                                   2 x log (x)
>>> (%o21)                            -----------
>>>                                      2
>>>                                     x  + 1
>>>
>>> Le mardi 25 octobre 2022 à 00:17:07 UTC+2, pvit...@gmail.com a écrit :
>>>
>>>> Thank you very much for the analysis. If I understand correctly, the 
>>>> bug is in this part of the integral:  x*log(x)^4/(x^2 + 1)
>>>>
>>>> I will try to report the bug to maxima. But, as far I can see 
>>>> https://sourceforge.net/p/maxima/bugs/ is very quiet, with few answers 
>>>> to the reports.
>>>>
>>>> El lunes, 24 de octubre de 2022 a las 21:33:41 UTC+2, Frédéric Chapoton 
>>>> escribió:
>>>>
>>>>> where we can see that there is a factor 2 between the wrong symbolic 
>>>>> value and the correct numeric value
>>>>>
>>>>> This should be filed as a bug in maxima.
>>>>>
>>>>> Le lundi 24 octobre 2022 à 21:24:30 UTC+2, Frédéric Chapoton a écrit :
>>>>>
>>>>>> and one more step :
>>>>>>
>>>>>> sage: integrate(x*log(x)^4/(x^2 + 1), x,0,1).n()
>>>>>> 1.45817965567036
>>>>>> sage: (x*log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>>>>> (0.7290898278351722, 2.48288156701193e-09, 357, 0)
>>>>>> sage: integrate(-log(x)^4/(x^2 + 1), x,0,1).n()
>>>>>> -23.9077878738501
>>>>>> sage: (-log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>>>>> (-23.90778787384685, 1.267767046897461e-08, 483, 0)
>>>>>>
>>>>>>
>>>>>> Le lundi 24 octobre 2022 à 21:19:46 UTC+2, Frédéric Chapoton a écrit :
>>>>>>
>>>>>>> more study of the bug (coming from maxima)
>>>>>>>
>>>>>>> sage: C=x^2*(log(x))^4/((x+1)*(1+x^2))
>>>>>>> sage: aa,bb=C.partial_fraction_decomposition()
>>>>>>> sage: integral(aa,x,0,1)
>>>>>>> -5/128*pi^5 + 45/64*zeta(5)
>>>>>>> sage: integral(bb,x,0,1)
>>>>>>> 45/4*zeta(5)
>>>>>>> sage: _+__
>>>>>>> -5/128*pi^5 + 765/64*zeta(5)
>>>>>>> sage: _.n()
>>>>>>> 0.440633136273039
>>>>>>> sage: aa.nintegral(x,0,1)
>>>>>>> (-11.58934902297507, 5.068708119893017e-08, 525, 0)
>>>>>>> sage: bb.nintegral(x,0,1)
>>>>>>> (11.66543724536065, 4.943314557692702e-08, 525, 0)
>>>>>>> sage: integral(aa,x,0,1).n()
>>>>>>> -11.2248041090899
>>>>>>> sage: integral(bb,x,0,1).n()
>>>>>>> 11.6654372453629
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a 
>>>>>>> écrit :
>>>>>>>
>>>>>>>> I am using Sage 9.7 running in Arch linux over WSL2
>>>>>>>>
>>>>>>>> I get different results for an integral using numerical integration 
>>>>>>>> (which seems to agree with Mathematica) and symbolic integration:
>>>>>>>>
>>>>>>>> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1)
>>>>>>>> (0.07608822217400527, 1.981757967172001e-07)
>>>>>>>>
>>>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1)
>>>>>>>> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5)
>>>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n()
>>>>>>>> 0.440633136273036
>>>>>>>>
>>>>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/7b5ec2c6-a68e-4976-be05-cf0dc2ddd309n%40googlegroups.com.

Reply via email to