and one more step :

sage: integrate(x*log(x)^4/(x^2 + 1), x,0,1).n()
1.45817965567036
sage: (x*log(x)^4/(x^2 + 1)).nintegral(x,0,1)
(0.7290898278351722, 2.48288156701193e-09, 357, 0)
sage: integrate(-log(x)^4/(x^2 + 1), x,0,1).n()
-23.9077878738501
sage: (-log(x)^4/(x^2 + 1)).nintegral(x,0,1)
(-23.90778787384685, 1.267767046897461e-08, 483, 0)


Le lundi 24 octobre 2022 à 21:19:46 UTC+2, Frédéric Chapoton a écrit :

> more study of the bug (coming from maxima)
>
> sage: C=x^2*(log(x))^4/((x+1)*(1+x^2))
> sage: aa,bb=C.partial_fraction_decomposition()
> sage: integral(aa,x,0,1)
> -5/128*pi^5 + 45/64*zeta(5)
> sage: integral(bb,x,0,1)
> 45/4*zeta(5)
> sage: _+__
> -5/128*pi^5 + 765/64*zeta(5)
> sage: _.n()
> 0.440633136273039
> sage: aa.nintegral(x,0,1)
> (-11.58934902297507, 5.068708119893017e-08, 525, 0)
> sage: bb.nintegral(x,0,1)
> (11.66543724536065, 4.943314557692702e-08, 525, 0)
> sage: integral(aa,x,0,1).n()
> -11.2248041090899
> sage: integral(bb,x,0,1).n()
> 11.6654372453629
>
>
>
> Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a écrit :
>
>> I am using Sage 9.7 running in Arch linux over WSL2
>>
>> I get different results for an integral using numerical integration 
>> (which seems to agree with Mathematica) and symbolic integration:
>>
>> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1)
>> (0.07608822217400527, 1.981757967172001e-07)
>>
>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1)
>> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5)
>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n()
>> 0.440633136273036
>>
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/06fc8cdf-6742-424c-b2c2-7559aaf08934n%40googlegroups.com.

Reply via email to