Ok, thanks a lot. I already reported the bug. 

El domingo, 30 de octubre de 2022 a las 10:27:23 UTC+1, Frédéric Chapoton 
escribió:

> The factor-2 problem is also present for the integral with no bounds. 
> Please report in maxima's bug reporting site.
>
> (%i20) integrate(x*log(x)^4/(x^2 + 1),x);
>                      4         2
>                 2 log (x) log(x  + 1)           2                    2
> (%o20) - (3 ((- ---------------------) + li (- x ) - 2 log(x) li (- x )
>                           3                5                    4
>                                                              3           2
>                                                         4 log (x) li (- x )
>                                        2           2                2
>                                 + 2 log (x) li (- x ) - 
> -------------------))/2
>                                               3                  3
> (%i21) diff(%,x);  
>                                          4
>                                   2 x log (x)
> (%o21)                            -----------
>                                      2
>                                     x  + 1
>
> Le mardi 25 octobre 2022 à 00:17:07 UTC+2, pvit...@gmail.com a écrit :
>
>> Thank you very much for the analysis. If I understand correctly, the bug 
>> is in this part of the integral:  x*log(x)^4/(x^2 + 1)
>>
>> I will try to report the bug to maxima. But, as far I can see 
>> https://sourceforge.net/p/maxima/bugs/ is very quiet, with few answers 
>> to the reports.
>>
>> El lunes, 24 de octubre de 2022 a las 21:33:41 UTC+2, Frédéric Chapoton 
>> escribió:
>>
>>> where we can see that there is a factor 2 between the wrong symbolic 
>>> value and the correct numeric value
>>>
>>> This should be filed as a bug in maxima.
>>>
>>> Le lundi 24 octobre 2022 à 21:24:30 UTC+2, Frédéric Chapoton a écrit :
>>>
>>>> and one more step :
>>>>
>>>> sage: integrate(x*log(x)^4/(x^2 + 1), x,0,1).n()
>>>> 1.45817965567036
>>>> sage: (x*log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>>> (0.7290898278351722, 2.48288156701193e-09, 357, 0)
>>>> sage: integrate(-log(x)^4/(x^2 + 1), x,0,1).n()
>>>> -23.9077878738501
>>>> sage: (-log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>>> (-23.90778787384685, 1.267767046897461e-08, 483, 0)
>>>>
>>>>
>>>> Le lundi 24 octobre 2022 à 21:19:46 UTC+2, Frédéric Chapoton a écrit :
>>>>
>>>>> more study of the bug (coming from maxima)
>>>>>
>>>>> sage: C=x^2*(log(x))^4/((x+1)*(1+x^2))
>>>>> sage: aa,bb=C.partial_fraction_decomposition()
>>>>> sage: integral(aa,x,0,1)
>>>>> -5/128*pi^5 + 45/64*zeta(5)
>>>>> sage: integral(bb,x,0,1)
>>>>> 45/4*zeta(5)
>>>>> sage: _+__
>>>>> -5/128*pi^5 + 765/64*zeta(5)
>>>>> sage: _.n()
>>>>> 0.440633136273039
>>>>> sage: aa.nintegral(x,0,1)
>>>>> (-11.58934902297507, 5.068708119893017e-08, 525, 0)
>>>>> sage: bb.nintegral(x,0,1)
>>>>> (11.66543724536065, 4.943314557692702e-08, 525, 0)
>>>>> sage: integral(aa,x,0,1).n()
>>>>> -11.2248041090899
>>>>> sage: integral(bb,x,0,1).n()
>>>>> 11.6654372453629
>>>>>
>>>>>
>>>>>
>>>>> Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a écrit :
>>>>>
>>>>>> I am using Sage 9.7 running in Arch linux over WSL2
>>>>>>
>>>>>> I get different results for an integral using numerical integration 
>>>>>> (which seems to agree with Mathematica) and symbolic integration:
>>>>>>
>>>>>> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1)
>>>>>> (0.07608822217400527, 1.981757967172001e-07)
>>>>>>
>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1)
>>>>>> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5)
>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n()
>>>>>> 0.440633136273036
>>>>>>
>>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/b27c7ef0-4f84-44aa-be56-ed8ed8e0bfaen%40googlegroups.com.

Reply via email to