amusingly, one can see that some power of 2 is lurking around : (%i36) expand(diff(integrate(x*log(x)**13/(1+x**2),x),x)); 13 4096 x log (x) (%o36) --------------- 2 13 x + 13
Le dimanche 30 octobre 2022 à 23:49:31 UTC+1, pvit...@gmail.com a écrit : > Ok, thanks a lot. I already reported the bug. > > El domingo, 30 de octubre de 2022 a las 10:27:23 UTC+1, Frédéric Chapoton > escribió: > >> The factor-2 problem is also present for the integral with no bounds. >> Please report in maxima's bug reporting site. >> >> (%i20) integrate(x*log(x)^4/(x^2 + 1),x); >> 4 2 >> 2 log (x) log(x + 1) 2 2 >> (%o20) - (3 ((- ---------------------) + li (- x ) - 2 log(x) li (- x ) >> 3 5 4 >> 3 2 >> 4 log (x) li (- x >> ) >> 2 2 2 >> + 2 log (x) li (- x ) - >> -------------------))/2 >> 3 3 >> (%i21) diff(%,x); >> 4 >> 2 x log (x) >> (%o21) ----------- >> 2 >> x + 1 >> >> Le mardi 25 octobre 2022 à 00:17:07 UTC+2, pvit...@gmail.com a écrit : >> >>> Thank you very much for the analysis. If I understand correctly, the bug >>> is in this part of the integral: x*log(x)^4/(x^2 + 1) >>> >>> I will try to report the bug to maxima. But, as far I can see >>> https://sourceforge.net/p/maxima/bugs/ is very quiet, with few answers >>> to the reports. >>> >>> El lunes, 24 de octubre de 2022 a las 21:33:41 UTC+2, Frédéric Chapoton >>> escribió: >>> >>>> where we can see that there is a factor 2 between the wrong symbolic >>>> value and the correct numeric value >>>> >>>> This should be filed as a bug in maxima. >>>> >>>> Le lundi 24 octobre 2022 à 21:24:30 UTC+2, Frédéric Chapoton a écrit : >>>> >>>>> and one more step : >>>>> >>>>> sage: integrate(x*log(x)^4/(x^2 + 1), x,0,1).n() >>>>> 1.45817965567036 >>>>> sage: (x*log(x)^4/(x^2 + 1)).nintegral(x,0,1) >>>>> (0.7290898278351722, 2.48288156701193e-09, 357, 0) >>>>> sage: integrate(-log(x)^4/(x^2 + 1), x,0,1).n() >>>>> -23.9077878738501 >>>>> sage: (-log(x)^4/(x^2 + 1)).nintegral(x,0,1) >>>>> (-23.90778787384685, 1.267767046897461e-08, 483, 0) >>>>> >>>>> >>>>> Le lundi 24 octobre 2022 à 21:19:46 UTC+2, Frédéric Chapoton a écrit : >>>>> >>>>>> more study of the bug (coming from maxima) >>>>>> >>>>>> sage: C=x^2*(log(x))^4/((x+1)*(1+x^2)) >>>>>> sage: aa,bb=C.partial_fraction_decomposition() >>>>>> sage: integral(aa,x,0,1) >>>>>> -5/128*pi^5 + 45/64*zeta(5) >>>>>> sage: integral(bb,x,0,1) >>>>>> 45/4*zeta(5) >>>>>> sage: _+__ >>>>>> -5/128*pi^5 + 765/64*zeta(5) >>>>>> sage: _.n() >>>>>> 0.440633136273039 >>>>>> sage: aa.nintegral(x,0,1) >>>>>> (-11.58934902297507, 5.068708119893017e-08, 525, 0) >>>>>> sage: bb.nintegral(x,0,1) >>>>>> (11.66543724536065, 4.943314557692702e-08, 525, 0) >>>>>> sage: integral(aa,x,0,1).n() >>>>>> -11.2248041090899 >>>>>> sage: integral(bb,x,0,1).n() >>>>>> 11.6654372453629 >>>>>> >>>>>> >>>>>> >>>>>> Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a >>>>>> écrit : >>>>>> >>>>>>> I am using Sage 9.7 running in Arch linux over WSL2 >>>>>>> >>>>>>> I get different results for an integral using numerical integration >>>>>>> (which seems to agree with Mathematica) and symbolic integration: >>>>>>> >>>>>>> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1) >>>>>>> (0.07608822217400527, 1.981757967172001e-07) >>>>>>> >>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1) >>>>>>> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5) >>>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n() >>>>>>> 0.440633136273036 >>>>>>> >>>>>> -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/adaae847-3c95-4c29-b21b-091400cd2746n%40googlegroups.com.