The factor-2 problem is also present for the integral with no bounds. 
Please report in maxima's bug reporting site.

(%i20) integrate(x*log(x)^4/(x^2 + 1),x);
                     4         2
                2 log (x) log(x  + 1)           2                    2
(%o20) - (3 ((- ---------------------) + li (- x ) - 2 log(x) li (- x )
                          3                5                    4
                                                             3           2
                                                        4 log (x) li (- x )
                                       2           2                2
                                + 2 log (x) li (- x ) - 
-------------------))/2
                                              3                  3
(%i21) diff(%,x);  
                                         4
                                  2 x log (x)
(%o21)                            -----------
                                     2
                                    x  + 1

Le mardi 25 octobre 2022 à 00:17:07 UTC+2, pvit...@gmail.com a écrit :

> Thank you very much for the analysis. If I understand correctly, the bug 
> is in this part of the integral:  x*log(x)^4/(x^2 + 1)
>
> I will try to report the bug to maxima. But, as far I can see 
> https://sourceforge.net/p/maxima/bugs/ is very quiet, with few answers to 
> the reports.
>
> El lunes, 24 de octubre de 2022 a las 21:33:41 UTC+2, Frédéric Chapoton 
> escribió:
>
>> where we can see that there is a factor 2 between the wrong symbolic 
>> value and the correct numeric value
>>
>> This should be filed as a bug in maxima.
>>
>> Le lundi 24 octobre 2022 à 21:24:30 UTC+2, Frédéric Chapoton a écrit :
>>
>>> and one more step :
>>>
>>> sage: integrate(x*log(x)^4/(x^2 + 1), x,0,1).n()
>>> 1.45817965567036
>>> sage: (x*log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>> (0.7290898278351722, 2.48288156701193e-09, 357, 0)
>>> sage: integrate(-log(x)^4/(x^2 + 1), x,0,1).n()
>>> -23.9077878738501
>>> sage: (-log(x)^4/(x^2 + 1)).nintegral(x,0,1)
>>> (-23.90778787384685, 1.267767046897461e-08, 483, 0)
>>>
>>>
>>> Le lundi 24 octobre 2022 à 21:19:46 UTC+2, Frédéric Chapoton a écrit :
>>>
>>>> more study of the bug (coming from maxima)
>>>>
>>>> sage: C=x^2*(log(x))^4/((x+1)*(1+x^2))
>>>> sage: aa,bb=C.partial_fraction_decomposition()
>>>> sage: integral(aa,x,0,1)
>>>> -5/128*pi^5 + 45/64*zeta(5)
>>>> sage: integral(bb,x,0,1)
>>>> 45/4*zeta(5)
>>>> sage: _+__
>>>> -5/128*pi^5 + 765/64*zeta(5)
>>>> sage: _.n()
>>>> 0.440633136273039
>>>> sage: aa.nintegral(x,0,1)
>>>> (-11.58934902297507, 5.068708119893017e-08, 525, 0)
>>>> sage: bb.nintegral(x,0,1)
>>>> (11.66543724536065, 4.943314557692702e-08, 525, 0)
>>>> sage: integral(aa,x,0,1).n()
>>>> -11.2248041090899
>>>> sage: integral(bb,x,0,1).n()
>>>> 11.6654372453629
>>>>
>>>>
>>>>
>>>> Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a écrit :
>>>>
>>>>> I am using Sage 9.7 running in Arch linux over WSL2
>>>>>
>>>>> I get different results for an integral using numerical integration 
>>>>> (which seems to agree with Mathematica) and symbolic integration:
>>>>>
>>>>> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1)
>>>>> (0.07608822217400527, 1.981757967172001e-07)
>>>>>
>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1)
>>>>> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5)
>>>>> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n()
>>>>> 0.440633136273036
>>>>>
>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/9e1d643a-39d7-4c35-8d8f-d2bc48d708c1n%40googlegroups.com.

Reply via email to