more study of the bug (coming from maxima) sage: C=x^2*(log(x))^4/((x+1)*(1+x^2)) sage: aa,bb=C.partial_fraction_decomposition() sage: integral(aa,x,0,1) -5/128*pi^5 + 45/64*zeta(5) sage: integral(bb,x,0,1) 45/4*zeta(5) sage: _+__ -5/128*pi^5 + 765/64*zeta(5) sage: _.n() 0.440633136273039 sage: aa.nintegral(x,0,1) (-11.58934902297507, 5.068708119893017e-08, 525, 0) sage: bb.nintegral(x,0,1) (11.66543724536065, 4.943314557692702e-08, 525, 0) sage: integral(aa,x,0,1).n() -11.2248041090899 sage: integral(bb,x,0,1).n() 11.6654372453629
Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a écrit : > I am using Sage 9.7 running in Arch linux over WSL2 > > I get different results for an integral using numerical integration (which > seems to agree with Mathematica) and symbolic integration: > > numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1) > (0.07608822217400527, 1.981757967172001e-07) > > integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1) > 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5) > integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n() > 0.440633136273036 > -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/6505b463-2d26-4427-8c07-6000230cb556n%40googlegroups.com.