more study of the bug (coming from maxima)

sage: C=x^2*(log(x))^4/((x+1)*(1+x^2))
sage: aa,bb=C.partial_fraction_decomposition()
sage: integral(aa,x,0,1)
-5/128*pi^5 + 45/64*zeta(5)
sage: integral(bb,x,0,1)
45/4*zeta(5)
sage: _+__
-5/128*pi^5 + 765/64*zeta(5)
sage: _.n()
0.440633136273039
sage: aa.nintegral(x,0,1)
(-11.58934902297507, 5.068708119893017e-08, 525, 0)
sage: bb.nintegral(x,0,1)
(11.66543724536065, 4.943314557692702e-08, 525, 0)
sage: integral(aa,x,0,1).n()
-11.2248041090899
sage: integral(bb,x,0,1).n()
11.6654372453629



Le lundi 24 octobre 2022 à 00:14:09 UTC+2, pvit...@gmail.com a écrit :

> I am using Sage 9.7 running in Arch linux over WSL2
>
> I get different results for an integral using numerical integration (which 
> seems to agree with Mathematica) and symbolic integration:
>
> numerical_integral(x^2*(log(x))^4/((x+1)*(1+x^2)),0,1)
> (0.07608822217400527, 1.981757967172001e-07)
>
> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1)
> 6*I*polylog(5, I) - 6*I*polylog(5, -I) + 765/64*zeta(5)
> integral(x^2*(log(x))^4/((x+1)*(1+x^2)),x,0,1).n()
> 0.440633136273036
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/6505b463-2d26-4427-8c07-6000230cb556n%40googlegroups.com.

Reply via email to