jingz-db commented on code in PR #49488:
URL: https://github.com/apache/spark/pull/49488#discussion_r1951698877


##########
sql/connect/common/src/main/scala/org/apache/spark/sql/connect/KeyValueGroupedDataset.scala:
##########
@@ -526,6 +553,71 @@ private class KeyValueGroupedDatasetImpl[K, V, IK, IV](
     }
   }
 
+  override protected[sql] def transformWithStateHelper[U: Encoder, S: Encoder](
+      statefulProcessor: StatefulProcessor[K, V, U],
+      timeMode: TimeMode,
+      outputMode: OutputMode,
+      initialState: Option[sql.KeyValueGroupedDataset[K, S]] = None,
+      eventTimeColumnName: String = ""): Dataset[U] = {
+    val outputEncoder = agnosticEncoderFor[U]
+    val stateEncoder = agnosticEncoderFor[S]
+
+    val inputEncoders: Seq[AgnosticEncoder[_]] = Seq(kEncoder, stateEncoder, 
ivEncoder)
+    val dummyGroupingFunc = SparkUserDefinedFunction(

Review Comment:
   Please ignore my comments above. I found `UdfPacket` in the 
CommonInlineUserDefinedFunction is doing java serialization on `AnyRef` type 
similar to what we are trying to do here for `StatefulProcessor`. So I remove 
the dummy udf implementation above and take advantage of `UdfPacket` instead.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to