jingz-db commented on code in PR #49488: URL: https://github.com/apache/spark/pull/49488#discussion_r1950054020
########## sql/connect/common/src/main/scala/org/apache/spark/sql/connect/KeyValueGroupedDataset.scala: ########## @@ -526,6 +553,71 @@ private class KeyValueGroupedDatasetImpl[K, V, IK, IV]( } } + override protected[sql] def transformWithStateHelper[U: Encoder, S: Encoder]( + statefulProcessor: StatefulProcessor[K, V, U], + timeMode: TimeMode, + outputMode: OutputMode, + initialState: Option[sql.KeyValueGroupedDataset[K, S]] = None, + eventTimeColumnName: String = ""): Dataset[U] = { + val outputEncoder = agnosticEncoderFor[U] + val stateEncoder = agnosticEncoderFor[S] + + val inputEncoders: Seq[AgnosticEncoder[_]] = Seq(kEncoder, stateEncoder, ivEncoder) + val dummyGroupingFunc = SparkUserDefinedFunction( + function = UdfUtils.noOp[K, U](), + inputEncoders = inputEncoders, + outputEncoder = outputEncoder) + val udf = toExpr( + dummyGroupingFunc.apply( + inputEncoders.map(_ => col("*")): _*)).getCommonInlineUserDefinedFunction + + val initialStateImpl = if (initialState.isDefined) { + assert(initialState.get.isInstanceOf[KeyValueGroupedDatasetImpl[K, S, _, _]]) + initialState.get.asInstanceOf[KeyValueGroupedDatasetImpl[K, S, _, _]] + } else { + null + } + + val statefulProcessorStr = if (!initialState.isDefined) { + ByteString.copyFrom(SparkSerDeUtils.serialize(statefulProcessor)) + } else { + ByteString.copyFrom( + SparkSerDeUtils.serialize( + statefulProcessor.asInstanceOf[StatefulProcessorWithInitialState[K, V, U, S]])) + } + + val twsDataset = sparkSession.newDataset[U](outputEncoder) { builder => + val twsBuilder = builder.getGroupMapBuilder + twsBuilder + .setInput(plan.getRoot) + .addAllGroupingExpressions(groupingExprs) + .setFunc(udf) + .setTransformWithStateInfo( + proto.TransformWithStateInfo + .newBuilder() + .setOutputMode(outputMode.toString) + // we pass time mode as string here and restore it in planner Review Comment: Replied in TimeMode.scala comment above. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org