jingz-db commented on code in PR #49488:
URL: https://github.com/apache/spark/pull/49488#discussion_r1950087562


##########
sql/connect/common/src/main/scala/org/apache/spark/sql/connect/KeyValueGroupedDataset.scala:
##########
@@ -526,6 +553,71 @@ private class KeyValueGroupedDatasetImpl[K, V, IK, IV](
     }
   }
 
+  override protected[sql] def transformWithStateHelper[U: Encoder, S: Encoder](
+      statefulProcessor: StatefulProcessor[K, V, U],
+      timeMode: TimeMode,
+      outputMode: OutputMode,
+      initialState: Option[sql.KeyValueGroupedDataset[K, S]] = None,
+      eventTimeColumnName: String = ""): Dataset[U] = {
+    val outputEncoder = agnosticEncoderFor[U]
+    val stateEncoder = agnosticEncoderFor[S]
+
+    val inputEncoders: Seq[AgnosticEncoder[_]] = Seq(kEncoder, stateEncoder, 
ivEncoder)
+    val dummyGroupingFunc = SparkUserDefinedFunction(

Review Comment:
   > TBH, I am am planning to remove this from the the scala client because it 
is incomprehensible, and quite frankly a hack. Can you please try pass the 
encoders needed as part of the statefulProcessor payload.
   
   Also I just realized we need to keep the dummy udf here because:
   ```
   // (Required) Input user-defined function.
    CommonInlineUserDefinedFunction func = 3;
   ```
   this is required for GroupMap protocol. 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to