jingz-db commented on code in PR #49488: URL: https://github.com/apache/spark/pull/49488#discussion_r1950087562
########## sql/connect/common/src/main/scala/org/apache/spark/sql/connect/KeyValueGroupedDataset.scala: ########## @@ -526,6 +553,71 @@ private class KeyValueGroupedDatasetImpl[K, V, IK, IV]( } } + override protected[sql] def transformWithStateHelper[U: Encoder, S: Encoder]( + statefulProcessor: StatefulProcessor[K, V, U], + timeMode: TimeMode, + outputMode: OutputMode, + initialState: Option[sql.KeyValueGroupedDataset[K, S]] = None, + eventTimeColumnName: String = ""): Dataset[U] = { + val outputEncoder = agnosticEncoderFor[U] + val stateEncoder = agnosticEncoderFor[S] + + val inputEncoders: Seq[AgnosticEncoder[_]] = Seq(kEncoder, stateEncoder, ivEncoder) + val dummyGroupingFunc = SparkUserDefinedFunction( Review Comment: > TBH, I am am planning to remove this from the the scala client because it is incomprehensible, and quite frankly a hack. Can you please try pass the encoders needed as part of the statefulProcessor payload. Also I just realized we need to keep the dummy udf here because: ``` // (Required) Input user-defined function. CommonInlineUserDefinedFunction func = 3; ``` this is required for GroupMap protocol. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org