Akhil
you mentioned /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar .
how come you got this lib into spark/lib folder.
1) did you place it there ?
2) What is download location ?


On Fri, Apr 3, 2015 at 3:42 PM, Todd Nist <tsind...@gmail.com> wrote:

> Started the spark shell with the one jar from hive suggested:
>
> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar 
> --jars /opt/apache-hive-0.13.1-bin/lib/hive-exec-0.13.1.jar
>
> Results in the same error:
>
> scala> sql(     |     """SELECT path, name, value, v1.peValue, v1.peName     
> |          FROM metric_table     |            lateral view 
> json_tuple(pathElements, 'name', 'value') v1     |              as peName, 
> peValue     |     """)
> 15/04/03 06:01:30 INFO ParseDriver: Parsing command: SELECT path, name, 
> value, v1.peValue, v1.peName         FROM metric_table           lateral view 
> json_tuple(pathElements, 'name', 'value') v1             as peName, peValue
> 15/04/03 06:01:31 INFO ParseDriver: Parse Completed
> res2: org.apache.spark.sql.SchemaRDD =
> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan ==
> java.lang.ClassNotFoundException: json_tuple
>
> I will try the rebuild.  Thanks again for the assistance.
>
> -Todd
>
>
> On Fri, Apr 3, 2015 at 5:34 AM, Akhil Das <ak...@sigmoidanalytics.com>
> wrote:
>
>> Can you try building Spark
>> <https://spark.apache.org/docs/1.2.0/building-spark.html#building-with-hive-and-jdbc-support%23building-with-hive-and-jdbc-support>
>> with hive support? Before that try to run the following:
>>
>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores
>> 2 --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-
>> bin.jar --jars /opt/hive/0.13.1/lib/hive-exec.jar
>>
>> Thanks
>> Best Regards
>>
>> On Fri, Apr 3, 2015 at 2:55 PM, Todd Nist <tsind...@gmail.com> wrote:
>>
>>> Hi Akhil,
>>>
>>> This is for version 1.2.1.  Well the other thread that you reference was
>>> me attempting it in 1.3.0 to see if the issue was related to 1.2.1.  I did
>>> not build Spark but used the version from the Spark download site for 1.2.1
>>> Pre Built for Hadoop 2.4 or Later.
>>>
>>> Since I get the error in both 1.2.1 and 1.3.0,
>>>
>>> 15/04/01 14:41:49 INFO ParseDriver: Parse Completed Exception in thread
>>> "main" java.lang.ClassNotFoundException: json_tuple at
>>> java.net.URLClassLoader$1.run(
>>>
>>> It looks like I just don't have the jar.  Even including all jars in the
>>> $HIVE/lib directory did not seem to work.  Though when looking in $HIVE/lib
>>> for 0.13.1, I do not see any json serde or jackson files.  I do see that
>>> hive-exec.jar contains
>>> the org/apache/hadoop/hive/ql/udf/generic/GenericUDTFJSONTuple class.  Do
>>> you know if there is another Jar that is required or should it work just by
>>> including all jars from $HIVE/lib?
>>>
>>> I can build it locally, but did not think that was required based on the
>>> version I downloaded; is that not the case?
>>>
>>> Thanks for the assistance.
>>>
>>> -Todd
>>>
>>>
>>> On Fri, Apr 3, 2015 at 2:06 AM, Akhil Das <ak...@sigmoidanalytics.com>
>>> wrote:
>>>
>>>> How did you build spark? which version of spark are you having? Doesn't
>>>> this thread already explains it?
>>>> https://www.mail-archive.com/user@spark.apache.org/msg25505.html
>>>>
>>>> Thanks
>>>> Best Regards
>>>>
>>>> On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote:
>>>>
>>>>> Hi Akhil,
>>>>>
>>>>> Tried your suggestion to no avail.  I actually to not see and
>>>>> "jackson" or "json serde" jars in the $HIVE/lib directory.  This is hive
>>>>> 0.13.1 and spark 1.2.1
>>>>>
>>>>> Here is what I did:
>>>>>
>>>>> I have added the lib folder to the –jars option when starting the
>>>>> spark-shell,
>>>>> but the job fails. The hive-site.xml is in the $SPARK_HOME/conf
>>>>> directory.
>>>>>
>>>>> I start the spark-shell as follows:
>>>>>
>>>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 
>>>>> 2 --driver-class-path 
>>>>> /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
>>>>>
>>>>> and like this
>>>>>
>>>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 
>>>>> 2 --driver-class-path 
>>>>> /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar --jars 
>>>>> /opt/hive/0.13.1/lib/*
>>>>>
>>>>> I’m just doing this in the spark-shell now:
>>>>>
>>>>> import org.apache.spark.sql.hive._val sqlContext = new 
>>>>> HiveContext(sc)import sqlContext._case class MetricTable(path: String, 
>>>>> pathElements: String, name: String, value: String)val mt = new 
>>>>> MetricTable("""path": "/DC1/HOST1/""",
>>>>>     """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": 
>>>>> "host","value": "HOST1"}]""",
>>>>>     """name": "Memory Usage (%)""",
>>>>>     """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt))
>>>>> rdd1.printSchema()
>>>>> rdd1.registerTempTable("metric_table")
>>>>> sql(
>>>>>     """SELECT path, name, value, v1.peValue, v1.peName
>>>>>          FROM metric_table
>>>>>            lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>              as peName, peValue
>>>>>     """)
>>>>>     .collect.foreach(println(_))
>>>>>
>>>>> It results in the same error:
>>>>>
>>>>> 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, 
>>>>> value, v1.peValue, v1.peName         FROM metric_table           lateral 
>>>>> view json_tuple(pathElements, 'name', 'value') v1             as peName, 
>>>>> peValue
>>>>> 15/04/02 12:34:00 INFO ParseDriver: Parse Completed
>>>>> res2: org.apache.spark.sql.SchemaRDD =
>>>>> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical 
>>>>> Plan ==
>>>>> java.lang.ClassNotFoundException: json_tuple
>>>>>
>>>>> Any other suggestions or am I doing something else wrong here?
>>>>>
>>>>> -Todd
>>>>>
>>>>>
>>>>>
>>>>> On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com>
>>>>> wrote:
>>>>>
>>>>>> Try adding all the jars in your $HIVE/lib directory. If you want the
>>>>>> specific jar, you could look fr jackson or json serde in it.
>>>>>>
>>>>>> Thanks
>>>>>> Best Regards
>>>>>>
>>>>>> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com>
>>>>>> wrote:
>>>>>>
>>>>>>> I have a feeling I’m missing a Jar that provides the support or
>>>>>>> could this may be related to
>>>>>>> https://issues.apache.org/jira/browse/SPARK-5792. If it is a Jar
>>>>>>> where would I find that ? I would have thought in the $HIVE/lib folder, 
>>>>>>> but
>>>>>>> not sure which jar contains it.
>>>>>>>
>>>>>>> Error:
>>>>>>>
>>>>>>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
>>>>>>> HiveMetaStore: 0: Opening raw store with implemenation 
>>>>>>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 
>>>>>>> INFO ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
>>>>>>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - 
>>>>>>> will be ignored15/04/01 14:41:45 INFO Persistence: Property 
>>>>>>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 
>>>>>>> INFO BlockManager: Removing broadcast 015/04/01 14:41:45 INFO 
>>>>>>> BlockManager: Removing block broadcast_015/04/01 14:41:45 INFO 
>>>>>>> MemoryStore: Block broadcast_0 of size 1272 dropped from memory (free 
>>>>>>> 278018571)15/04/01 14:41:45 INFO BlockManager: Removing block 
>>>>>>> broadcast_0_piece015/04/01 14:41:45 INFO MemoryStore: Block 
>>>>>>> broadcast_0_piece0 of size 869 dropped from memory (free 
>>>>>>> 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: Removed 
>>>>>>> broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, free: 
>>>>>>> 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of 
>>>>>>> block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: 
>>>>>>> Removed broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 
>>>>>>> B, free: 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned 
>>>>>>> broadcast 015/04/01 14:41:46 INFO ObjectStore: Setting MetaStore object 
>>>>>>> pin classes with 
>>>>>>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>>>>>>>  14:41:46 INFO Datastore: The class 
>>>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>>> 14:41:46 INFO Datastore: The class 
>>>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>>> 14:41:47 INFO Datastore: The class 
>>>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>>> 14:41:47 INFO Datastore: The class 
>>>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>>> 14:41:47 INFO Query: Reading in results for query 
>>>>>>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection 
>>>>>>> used is closing15/04/01 14:41:47 INFO ObjectStore: Initialized 
>>>>>>> ObjectStore15/04/01 14:41:47 INFO HiveMetaStore: Added admin role in 
>>>>>>> metastore15/04/01 14:41:47 INFO HiveMetaStore: Added public role in 
>>>>>>> metastore15/04/01 14:41:48 INFO HiveMetaStore: No user is added in 
>>>>>>> admin role, since config is empty15/04/01 14:41:48 INFO SessionState: 
>>>>>>> No Tez session required at this point. 
>>>>>>> hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing 
>>>>>>> command: SELECT path, name, value, v1.peValue, v1.peName
>>>>>>>              FROM metric
>>>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>>>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: 
>>>>>>> Parse CompletedException in thread "main" 
>>>>>>> java.lang.ClassNotFoundException: json_tuple
>>>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>>>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>>>>>>>     at java.security.AccessController.doPrivileged(Native Method)
>>>>>>>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>>>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>>>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>>>         at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>>>     at scala.Option.map(Option.scala:145)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>>>         at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>>>         at 
>>>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>>>>>>>     at 
>>>>>>> scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>>>>>>>         at 
>>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>         at 
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>     at 
>>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>>>     at 
>>>>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>>>>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>>>>>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>>>>>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>>>>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>>>>>     at 
>>>>>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>>>>>     at 
>>>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>>>>>     at 
>>>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>>>>>>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>>>>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>>>>>     at 
>>>>>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>>>>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>>>>>>>     at 
>>>>>>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>>>>>>>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>>>>>>>         at 
>>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>>>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>>>>>>>     at 
>>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>>>>>>>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>>>>>>>     at 
>>>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>>>>>>>     at 
>>>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>>>>>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>>     at 
>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>>>>>     at 
>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>>     at java.lang.reflect.Method.invoke(Method.java:483)
>>>>>>>     at 
>>>>>>> org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>>>>>>>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>>>>>>>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>>>>>
>>>>>>> Json:
>>>>>>>
>>>>>>> "metric": {
>>>>>>>
>>>>>>>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>>>>>>>     "pathElements": [
>>>>>>>     {
>>>>>>>         "node": "State",
>>>>>>>         "value": "PA"
>>>>>>>     },
>>>>>>>     {
>>>>>>>         "node": "City",
>>>>>>>         "value": "Pittsburgh"
>>>>>>>     },
>>>>>>>     {
>>>>>>>         "node": "Street",
>>>>>>>         "value": "12345 Westbrook Drive"
>>>>>>>     },
>>>>>>>     {
>>>>>>>         "node": "level",
>>>>>>>         "value": "main"
>>>>>>>     },
>>>>>>>     {
>>>>>>>         "node": "device",
>>>>>>>         "value": "thermostat"
>>>>>>>     }
>>>>>>>     ],
>>>>>>>     "name": "Current Temperature",
>>>>>>>     "value": 29.590943279257175,
>>>>>>>     "timestamp": "2015-03-27T14:53:46+0000"
>>>>>>>   }
>>>>>>>
>>>>>>> Here is the code that produces the error:
>>>>>>>
>>>>>>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
>>>>>>> org.apache.spark.SparkContext._
>>>>>>> import org.apache.spark.rdd.RDD
>>>>>>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
>>>>>>> org.apache.spark.sql.hive._
>>>>>>> // ES importsimport org.elasticsearch.spark._import 
>>>>>>> org.elasticsearch.spark.sql._
>>>>>>> def main(args: Array[String]) {
>>>>>>>     val sc = sparkInit
>>>>>>>
>>>>>>>     @transient
>>>>>>>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>>>>>>>
>>>>>>>     import hiveContext._
>>>>>>>
>>>>>>>     val start = System.currentTimeMillis()
>>>>>>>
>>>>>>>     /*
>>>>>>>      * Read from ES and provide some insights with SparkSQL
>>>>>>>      */
>>>>>>>     val esData = 
>>>>>>> sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>>>>>>>
>>>>>>>     esData.collect.foreach(println(_))
>>>>>>>
>>>>>>>     val end = System.currentTimeMillis()
>>>>>>>     println(s"Total time: ${end-start} ms")
>>>>>>>
>>>>>>>     println("Create Metric Temporary Table for querying")
>>>>>>>
>>>>>>>     val schemaRDD = hiveContext.sql(
>>>>>>>           "CREATE TEMPORARY TABLE metric     " +
>>>>>>>           "USING org.elasticsearch.spark.sql " +
>>>>>>>           "OPTIONS (resource 'device/metric')" )
>>>>>>>
>>>>>>>     hiveContext.sql(
>>>>>>>         """SELECT path, name, value, v1.peValue, v1.peName
>>>>>>>              FROM metric
>>>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>>>                as peName, peValue
>>>>>>>         """)
>>>>>>>         .collect.foreach(println(_))
>>>>>>>   }
>>>>>>> }
>>>>>>>
>>>>>>> More than likely I’m missing a jar, but not sure what that would be.
>>>>>>>
>>>>>>> -Todd
>>>>>>>
>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>


-- 
Deepak

Reply via email to