How did you build spark? which version of spark are you having? Doesn't this thread already explains it? https://www.mail-archive.com/user@spark.apache.org/msg25505.html
Thanks Best Regards On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote: > Hi Akhil, > > Tried your suggestion to no avail. I actually to not see and "jackson" or > "json serde" jars in the $HIVE/lib directory. This is hive 0.13.1 and > spark 1.2.1 > > Here is what I did: > > I have added the lib folder to the –jars option when starting the > spark-shell, > but the job fails. The hive-site.xml is in the $SPARK_HOME/conf directory. > > I start the spark-shell as follows: > > ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 > --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar > > and like this > > ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 > --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar > --jars /opt/hive/0.13.1/lib/* > > I’m just doing this in the spark-shell now: > > import org.apache.spark.sql.hive._val sqlContext = new HiveContext(sc)import > sqlContext._case class MetricTable(path: String, pathElements: String, name: > String, value: String)val mt = new MetricTable("""path": "/DC1/HOST1/""", > """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": > "host","value": "HOST1"}]""", > """name": "Memory Usage (%)""", > """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt)) > rdd1.printSchema() > rdd1.registerTempTable("metric_table") > sql( > """SELECT path, name, value, v1.peValue, v1.peName > FROM metric_table > lateral view json_tuple(pathElements, 'name', 'value') v1 > as peName, peValue > """) > .collect.foreach(println(_)) > > It results in the same error: > > 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, > value, v1.peValue, v1.peName FROM metric_table lateral view > json_tuple(pathElements, 'name', 'value') v1 as peName, peValue > 15/04/02 12:34:00 INFO ParseDriver: Parse Completed > res2: org.apache.spark.sql.SchemaRDD = > SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan == > java.lang.ClassNotFoundException: json_tuple > > Any other suggestions or am I doing something else wrong here? > > -Todd > > > > On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com> > wrote: > >> Try adding all the jars in your $HIVE/lib directory. If you want the >> specific jar, you could look fr jackson or json serde in it. >> >> Thanks >> Best Regards >> >> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote: >> >>> I have a feeling I’m missing a Jar that provides the support or could >>> this may be related to https://issues.apache.org/jira/browse/SPARK-5792. >>> If it is a Jar where would I find that ? I would have thought in the >>> $HIVE/lib folder, but not sure which jar contains it. >>> >>> Error: >>> >>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO >>> HiveMetaStore: 0: Opening raw store with implemenation >>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO >>> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO >>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will >>> be ignored15/04/01 14:41:45 INFO Persistence: Property >>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO >>> BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: >>> Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block >>> broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 >>> 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 >>> 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped >>> from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: >>> Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, >>> free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of >>> block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed >>> broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: >>> 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 015/04/01 >>> 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes with >>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01 >>> 14:41:46 INFO Datastore: The class >>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as >>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 >>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" >>> is tagged as "embedded-only" so does not have its own datastore >>> table.15/04/01 14:41:47 INFO Datastore: The class >>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as >>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 >>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" >>> is tagged as "embedded-only" so does not have its own datastore >>> table.15/04/01 14:41:47 INFO Query: Reading in results for query >>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used is >>> closing15/04/01 14:41:47 INFO ObjectStore: Initialized ObjectStore15/04/01 >>> 14:41:47 INFO HiveMetaStore: Added admin role in metastore15/04/01 14:41:47 >>> INFO HiveMetaStore: Added public role in metastore15/04/01 14:41:48 INFO >>> HiveMetaStore: No user is added in admin role, since config is >>> empty15/04/01 14:41:48 INFO SessionState: No Tez session required at this >>> point. hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing >>> command: SELECT path, name, value, v1.peValue, v1.peName >>> FROM metric >>> lateral view json_tuple(pathElements, 'name', 'value') v1 >>> as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse >>> CompletedException in thread "main" java.lang.ClassNotFoundException: >>> json_tuple >>> at java.net.URLClassLoader$1.run(URLClassLoader.java:372) >>> at java.net.URLClassLoader$1.run(URLClassLoader.java:361) >>> at java.security.AccessController.doPrivileged(Native Method) >>> at java.net.URLClassLoader.findClass(URLClassLoader.java:360) >>> at java.lang.ClassLoader.loadClass(ClassLoader.java:424) >>> at java.lang.ClassLoader.loadClass(ClassLoader.java:357) >>> at >>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272) >>> at >>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278) >>> at >>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) >>> at scala.Option.map(Option.scala:145) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) >>> at >>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) >>> at >>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) >>> at scala.collection.immutable.List.foreach(List.scala:318) >>> at >>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251) >>> at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105) >>> at >>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156) >>> at >>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144) >>> at >>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71) >>> at >>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85) >>> at >>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >>> at >>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >>> at >>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) >>> at scala.collection.AbstractTraversable.map(Traversable.scala:105) >>> at >>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84) >>> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) >>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>> at >>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>> at >>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>> at >>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>> at >>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89) >>> at >>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153) >>> at >>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153) >>> at >>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152) >>> at >>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61) >>> at >>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59) >>> at >>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) >>> at scala.collection.immutable.List.foldLeft(List.scala:84) >>> at >>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59) >>> at >>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51) >>> at scala.collection.immutable.List.foreach(List.scala:318) >>> at >>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422) >>> at >>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422) >>> at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444) >>> at >>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119) >>> at >>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala) >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> at java.lang.reflect.Method.invoke(Method.java:483) >>> at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) >>> at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) >>> at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >>> >>> Json: >>> >>> "metric": { >>> >>> "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1", >>> "pathElements": [ >>> { >>> "node": "State", >>> "value": "PA" >>> }, >>> { >>> "node": "City", >>> "value": "Pittsburgh" >>> }, >>> { >>> "node": "Street", >>> "value": "12345 Westbrook Drive" >>> }, >>> { >>> "node": "level", >>> "value": "main" >>> }, >>> { >>> "node": "device", >>> "value": "thermostat" >>> } >>> ], >>> "name": "Current Temperature", >>> "value": 29.590943279257175, >>> "timestamp": "2015-03-27T14:53:46+0000" >>> } >>> >>> Here is the code that produces the error: >>> >>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import >>> org.apache.spark.SparkContext._ >>> import org.apache.spark.rdd.RDD >>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import >>> org.apache.spark.sql.hive._ >>> // ES importsimport org.elasticsearch.spark._import >>> org.elasticsearch.spark.sql._ >>> def main(args: Array[String]) { >>> val sc = sparkInit >>> >>> @transient >>> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) >>> >>> import hiveContext._ >>> >>> val start = System.currentTimeMillis() >>> >>> /* >>> * Read from ES and provide some insights with SparkSQL >>> */ >>> val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}") >>> >>> esData.collect.foreach(println(_)) >>> >>> val end = System.currentTimeMillis() >>> println(s"Total time: ${end-start} ms") >>> >>> println("Create Metric Temporary Table for querying") >>> >>> val schemaRDD = hiveContext.sql( >>> "CREATE TEMPORARY TABLE metric " + >>> "USING org.elasticsearch.spark.sql " + >>> "OPTIONS (resource 'device/metric')" ) >>> >>> hiveContext.sql( >>> """SELECT path, name, value, v1.peValue, v1.peName >>> FROM metric >>> lateral view json_tuple(pathElements, 'name', 'value') v1 >>> as peName, peValue >>> """) >>> .collect.foreach(println(_)) >>> } >>> } >>> >>> More than likely I’m missing a jar, but not sure what that would be. >>> >>> -Todd >>> >> >> >