Hi Akhil, Tried your suggestion to no avail. I actually to not see and "jackson" or "json serde" jars in the $HIVE/lib directory. This is hive 0.13.1 and spark 1.2.1
Here is what I did: I have added the lib folder to the –jars option when starting the spark-shell, but the job fails. The hive-site.xml is in the $SPARK_HOME/conf directory. I start the spark-shell as follows: ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar and like this ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar --jars /opt/hive/0.13.1/lib/* I’m just doing this in the spark-shell now: import org.apache.spark.sql.hive._val sqlContext = new HiveContext(sc)import sqlContext._case class MetricTable(path: String, pathElements: String, name: String, value: String)val mt = new MetricTable("""path": "/DC1/HOST1/""", """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": "host","value": "HOST1"}]""", """name": "Memory Usage (%)""", """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt)) rdd1.printSchema() rdd1.registerTempTable("metric_table") sql( """SELECT path, name, value, v1.peValue, v1.peName FROM metric_table lateral view json_tuple(pathElements, 'name', 'value') v1 as peName, peValue """) .collect.foreach(println(_)) It results in the same error: 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, value, v1.peValue, v1.peName FROM metric_table lateral view json_tuple(pathElements, 'name', 'value') v1 as peName, peValue 15/04/02 12:34:00 INFO ParseDriver: Parse Completed res2: org.apache.spark.sql.SchemaRDD = SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan == java.lang.ClassNotFoundException: json_tuple Any other suggestions or am I doing something else wrong here? -Todd On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com> wrote: > Try adding all the jars in your $HIVE/lib directory. If you want the > specific jar, you could look fr jackson or json serde in it. > > Thanks > Best Regards > > On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote: > >> I have a feeling I’m missing a Jar that provides the support or could >> this may be related to https://issues.apache.org/jira/browse/SPARK-5792. >> If it is a Jar where would I find that ? I would have thought in the >> $HIVE/lib folder, but not sure which jar contains it. >> >> Error: >> >> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO >> HiveMetaStore: 0: Opening raw store with implemenation >> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO >> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO >> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be >> ignored15/04/01 14:41:45 INFO Persistence: Property datanucleus.cache.level2 >> unknown - will be ignored15/04/01 14:41:45 INFO BlockManager: Removing >> broadcast 015/04/01 14:41:45 INFO BlockManager: Removing block >> broadcast_015/04/01 14:41:45 INFO MemoryStore: Block broadcast_0 of size >> 1272 dropped from memory (free 278018571)15/04/01 14:41:45 INFO >> BlockManager: Removing block broadcast_0_piece015/04/01 14:41:45 INFO >> MemoryStore: Block broadcast_0_piece0 of size 869 dropped from memory (free >> 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: Removed >> broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, free: >> 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of block >> broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed >> broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: >> 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 015/04/01 >> 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes with >> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01 >> 14:41:46 INFO Datastore: The class >> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as >> "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 >> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is >> tagged as "embedded-only" so does not have its own datastore table.15/04/01 >> 14:41:47 INFO Datastore: The class >> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as >> "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 >> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is >> tagged as "embedded-only" so does not have its own datastore table.15/04/01 >> 14:41:47 INFO Query: Reading in results for query >> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used is >> closing15/04/01 14:41:47 INFO ObjectStore: Initialized ObjectStore15/04/01 >> 14:41:47 INFO HiveMetaStore: Added admin role in metastore15/04/01 14:41:47 >> INFO HiveMetaStore: Added public role in metastore15/04/01 14:41:48 INFO >> HiveMetaStore: No user is added in admin role, since config is empty15/04/01 >> 14:41:48 INFO SessionState: No Tez session required at this point. >> hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing >> command: SELECT path, name, value, v1.peValue, v1.peName >> FROM metric >> lateral view json_tuple(pathElements, 'name', 'value') v1 >> as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse >> CompletedException in thread "main" java.lang.ClassNotFoundException: >> json_tuple >> at java.net.URLClassLoader$1.run(URLClassLoader.java:372) >> at java.net.URLClassLoader$1.run(URLClassLoader.java:361) >> at java.security.AccessController.doPrivileged(Native Method) >> at java.net.URLClassLoader.findClass(URLClassLoader.java:360) >> at java.lang.ClassLoader.loadClass(ClassLoader.java:424) >> at java.lang.ClassLoader.loadClass(ClassLoader.java:357) >> at >> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261) >> at org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272) >> at >> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278) >> at >> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60) >> at >> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) >> at >> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) >> at scala.Option.map(Option.scala:145) >> at >> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50) >> at >> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60) >> at >> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) >> at >> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) >> at >> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) >> at >> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) >> at scala.collection.immutable.List.foreach(List.scala:318) >> at >> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251) >> at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105) >> at >> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156) >> at >> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144) >> at >> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71) >> at >> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85) >> at >> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >> at >> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >> at >> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) >> at scala.collection.AbstractTraversable.map(Traversable.scala:105) >> at >> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84) >> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) >> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >> at >> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >> at >> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >> at >> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >> at >> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >> at >> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >> at >> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89) >> at >> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153) >> at >> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153) >> at >> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152) >> at >> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61) >> at >> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59) >> at >> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) >> at scala.collection.immutable.List.foldLeft(List.scala:84) >> at >> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59) >> at >> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51) >> at scala.collection.immutable.List.foreach(List.scala:318) >> at >> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422) >> at >> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422) >> at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444) >> at >> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119) >> at >> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala) >> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >> at >> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >> at >> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >> at java.lang.reflect.Method.invoke(Method.java:483) >> at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) >> at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) >> at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >> >> Json: >> >> "metric": { >> >> "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1", >> "pathElements": [ >> { >> "node": "State", >> "value": "PA" >> }, >> { >> "node": "City", >> "value": "Pittsburgh" >> }, >> { >> "node": "Street", >> "value": "12345 Westbrook Drive" >> }, >> { >> "node": "level", >> "value": "main" >> }, >> { >> "node": "device", >> "value": "thermostat" >> } >> ], >> "name": "Current Temperature", >> "value": 29.590943279257175, >> "timestamp": "2015-03-27T14:53:46+0000" >> } >> >> Here is the code that produces the error: >> >> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import >> org.apache.spark.SparkContext._ >> import org.apache.spark.rdd.RDD >> import org.apache.spark.sql.{SchemaRDD,SQLContext}import >> org.apache.spark.sql.hive._ >> // ES importsimport org.elasticsearch.spark._import >> org.elasticsearch.spark.sql._ >> def main(args: Array[String]) { >> val sc = sparkInit >> >> @transient >> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) >> >> import hiveContext._ >> >> val start = System.currentTimeMillis() >> >> /* >> * Read from ES and provide some insights with SparkSQL >> */ >> val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}") >> >> esData.collect.foreach(println(_)) >> >> val end = System.currentTimeMillis() >> println(s"Total time: ${end-start} ms") >> >> println("Create Metric Temporary Table for querying") >> >> val schemaRDD = hiveContext.sql( >> "CREATE TEMPORARY TABLE metric " + >> "USING org.elasticsearch.spark.sql " + >> "OPTIONS (resource 'device/metric')" ) >> >> hiveContext.sql( >> """SELECT path, name, value, v1.peValue, v1.peName >> FROM metric >> lateral view json_tuple(pathElements, 'name', 'value') v1 >> as peName, peValue >> """) >> .collect.foreach(println(_)) >> } >> } >> >> More than likely I’m missing a jar, but not sure what that would be. >> >> -Todd >> > >