Hi Akhil,

This is for version 1.2.1.  Well the other thread that you reference was me
attempting it in 1.3.0 to see if the issue was related to 1.2.1.  I did not
build Spark but used the version from the Spark download site for 1.2.1 Pre
Built for Hadoop 2.4 or Later.

Since I get the error in both 1.2.1 and 1.3.0,

15/04/01 14:41:49 INFO ParseDriver: Parse Completed Exception in thread
"main" java.lang.ClassNotFoundException: json_tuple at
java.net.URLClassLoader$1.run(

It looks like I just don't have the jar.  Even including all jars in the
$HIVE/lib directory did not seem to work.  Though when looking in $HIVE/lib
for 0.13.1, I do not see any json serde or jackson files.  I do see that
hive-exec.jar contains
the org/apache/hadoop/hive/ql/udf/generic/GenericUDTFJSONTuple class.  Do
you know if there is another Jar that is required or should it work just by
including all jars from $HIVE/lib?

I can build it locally, but did not think that was required based on the
version I downloaded; is that not the case?

Thanks for the assistance.

-Todd


On Fri, Apr 3, 2015 at 2:06 AM, Akhil Das <ak...@sigmoidanalytics.com>
wrote:

> How did you build spark? which version of spark are you having? Doesn't
> this thread already explains it?
> https://www.mail-archive.com/user@spark.apache.org/msg25505.html
>
> Thanks
> Best Regards
>
> On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote:
>
>> Hi Akhil,
>>
>> Tried your suggestion to no avail.  I actually to not see and "jackson"
>> or "json serde" jars in the $HIVE/lib directory.  This is hive 0.13.1 and
>> spark 1.2.1
>>
>> Here is what I did:
>>
>> I have added the lib folder to the –jars option when starting the
>> spark-shell,
>> but the job fails. The hive-site.xml is in the $SPARK_HOME/conf directory.
>>
>> I start the spark-shell as follows:
>>
>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
>> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
>>
>> and like this
>>
>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
>> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar 
>> --jars /opt/hive/0.13.1/lib/*
>>
>> I’m just doing this in the spark-shell now:
>>
>> import org.apache.spark.sql.hive._val sqlContext = new HiveContext(sc)import 
>> sqlContext._case class MetricTable(path: String, pathElements: String, name: 
>> String, value: String)val mt = new MetricTable("""path": "/DC1/HOST1/""",
>>     """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": 
>> "host","value": "HOST1"}]""",
>>     """name": "Memory Usage (%)""",
>>     """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt))
>> rdd1.printSchema()
>> rdd1.registerTempTable("metric_table")
>> sql(
>>     """SELECT path, name, value, v1.peValue, v1.peName
>>          FROM metric_table
>>            lateral view json_tuple(pathElements, 'name', 'value') v1
>>              as peName, peValue
>>     """)
>>     .collect.foreach(println(_))
>>
>> It results in the same error:
>>
>> 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, 
>> value, v1.peValue, v1.peName         FROM metric_table           lateral 
>> view json_tuple(pathElements, 'name', 'value') v1             as peName, 
>> peValue
>> 15/04/02 12:34:00 INFO ParseDriver: Parse Completed
>> res2: org.apache.spark.sql.SchemaRDD =
>> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan ==
>> java.lang.ClassNotFoundException: json_tuple
>>
>> Any other suggestions or am I doing something else wrong here?
>>
>> -Todd
>>
>>
>>
>> On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com>
>> wrote:
>>
>>> Try adding all the jars in your $HIVE/lib directory. If you want the
>>> specific jar, you could look fr jackson or json serde in it.
>>>
>>> Thanks
>>> Best Regards
>>>
>>> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote:
>>>
>>>> I have a feeling I’m missing a Jar that provides the support or could
>>>> this may be related to https://issues.apache.org/jira/browse/SPARK-5792.
>>>> If it is a Jar where would I find that ? I would have thought in the
>>>> $HIVE/lib folder, but not sure which jar contains it.
>>>>
>>>> Error:
>>>>
>>>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
>>>> HiveMetaStore: 0: Opening raw store with implemenation 
>>>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO 
>>>> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
>>>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will 
>>>> be ignored15/04/01 14:41:45 INFO Persistence: Property 
>>>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO 
>>>> BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: 
>>>> Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block 
>>>> broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 
>>>> 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 
>>>> 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped 
>>>> from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: 
>>>> Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, 
>>>> free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of 
>>>> block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed 
>>>> broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: 
>>>> 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 
>>>> 015/04/01 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes 
>>>> with 
>>>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>>>>  14:41:46 INFO Datastore: The class 
>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 
>>>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" 
>>>> is tagged as "embedded-only" so does not have its own datastore 
>>>> table.15/04/01 14:41:47 INFO Datastore: The class 
>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 
>>>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" 
>>>> is tagged as "embedded-only" so does not have its own datastore 
>>>> table.15/04/01 14:41:47 INFO Query: Reading in results for query 
>>>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used 
>>>> is closing15/04/01 14:41:47 INFO ObjectStore: Initialized 
>>>> ObjectStore15/04/01 14:41:47 INFO HiveMetaStore: Added admin role in 
>>>> metastore15/04/01 14:41:47 INFO HiveMetaStore: Added public role in 
>>>> metastore15/04/01 14:41:48 INFO HiveMetaStore: No user is added in admin 
>>>> role, since config is empty15/04/01 14:41:48 INFO SessionState: No Tez 
>>>> session required at this point. hive.execution.engine=mr.15/04/01 14:41:49 
>>>> INFO ParseDriver: Parsing command: SELECT path, name, value, v1.peValue, 
>>>> v1.peName
>>>>              FROM metric
>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse 
>>>> CompletedException in thread "main" java.lang.ClassNotFoundException: 
>>>> json_tuple
>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>>>>     at java.security.AccessController.doPrivileged(Native Method)
>>>>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>>>>     at 
>>>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>    at 
>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>     at scala.Option.map(Option.scala:145)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>    at 
>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>     at 
>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>    at 
>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>     at 
>>>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>>>>     at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>>>>    at 
>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>>>>     at 
>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>    at 
>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>     at 
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>>     at 
>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>>>>    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>>     at 
>>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>>     at 
>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>>     at 
>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>>     at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>>>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>>     at 
>>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>>     at 
>>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>>>>     at 
>>>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>>>>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>>>>    at 
>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>     at 
>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>>>>     at 
>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>>>>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>>>>     at 
>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>>>>     at 
>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>     at 
>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>>     at 
>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>     at java.lang.reflect.Method.invoke(Method.java:483)
>>>>     at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>>>>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>>>>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>>
>>>> Json:
>>>>
>>>> "metric": {
>>>>
>>>>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>>>>     "pathElements": [
>>>>     {
>>>>         "node": "State",
>>>>         "value": "PA"
>>>>     },
>>>>     {
>>>>         "node": "City",
>>>>         "value": "Pittsburgh"
>>>>     },
>>>>     {
>>>>         "node": "Street",
>>>>         "value": "12345 Westbrook Drive"
>>>>     },
>>>>     {
>>>>         "node": "level",
>>>>         "value": "main"
>>>>     },
>>>>     {
>>>>         "node": "device",
>>>>         "value": "thermostat"
>>>>     }
>>>>     ],
>>>>     "name": "Current Temperature",
>>>>     "value": 29.590943279257175,
>>>>     "timestamp": "2015-03-27T14:53:46+0000"
>>>>   }
>>>>
>>>> Here is the code that produces the error:
>>>>
>>>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
>>>> org.apache.spark.SparkContext._
>>>> import org.apache.spark.rdd.RDD
>>>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
>>>> org.apache.spark.sql.hive._
>>>> // ES importsimport org.elasticsearch.spark._import 
>>>> org.elasticsearch.spark.sql._
>>>> def main(args: Array[String]) {
>>>>     val sc = sparkInit
>>>>
>>>>     @transient
>>>>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>>>>
>>>>     import hiveContext._
>>>>
>>>>     val start = System.currentTimeMillis()
>>>>
>>>>     /*
>>>>      * Read from ES and provide some insights with SparkSQL
>>>>      */
>>>>     val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>>>>
>>>>     esData.collect.foreach(println(_))
>>>>
>>>>     val end = System.currentTimeMillis()
>>>>     println(s"Total time: ${end-start} ms")
>>>>
>>>>     println("Create Metric Temporary Table for querying")
>>>>
>>>>     val schemaRDD = hiveContext.sql(
>>>>           "CREATE TEMPORARY TABLE metric     " +
>>>>           "USING org.elasticsearch.spark.sql " +
>>>>           "OPTIONS (resource 'device/metric')" )
>>>>
>>>>     hiveContext.sql(
>>>>         """SELECT path, name, value, v1.peValue, v1.peName
>>>>              FROM metric
>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>                as peName, peValue
>>>>         """)
>>>>         .collect.foreach(println(_))
>>>>   }
>>>> }
>>>>
>>>> More than likely I’m missing a jar, but not sure what that would be.
>>>>
>>>> -Todd
>>>>
>>>
>>>
>>
>

Reply via email to