Hi, sorry, my mail client sent before I was done. I think the problem is that the Scala compiler derives a wrong type for this statement: val table = env.fromElements((123, "a"), (234, "b"), (345, "c"), (null, "d")).toTable
Because of the null value it derives (Any, String) as the type if you do it like this, I think it should work: val table = env.fromElements[(Integer, String)]((123, "a"), (234, "b"), (345, "c"), (null, "d")).toTable I used Integer instead of Int because Scala will complain that null is not a valid value for Int otherwise. Cheers, Aljoscha On Sun, 14 Jun 2015 at 19:34 Aljoscha Krettek <aljos...@apache.org> wrote: > Hi, > I think the problem is that the Scala compiler derives a wrong type for > this statement: > > > > On Sun, 14 Jun 2015 at 18:28 Shiti Saxena <ssaxena....@gmail.com> wrote: > >> Hi Aljoscha, >> >> I created the issue FLINK-2210 >> <https://issues.apache.org/jira/browse/FLINK-2210> for aggregate on >> null. I made changes to ExpressionAggregateFunction to handle ignore null >> values. But I am unable to create a Table with null values in tests. >> >> The code I used is, >> >> def testAggregationWithNull(): Unit = { >> >> val env = ExecutionEnvironment.getExecutionEnvironment >> val table = env.fromElements((123, "a"), (234, "b"), (345, "c"), >> (null, "d")).toTable >> >> val total = table.select('_1.sum).collect().head.productElement(0) >> assertEquals(total, 702) >> } >> >> and the error i get is, >> >> org.apache.flink.api.table.ExpressionException: Invalid expression >> "('_1).sum": Unsupported type GenericType<java.lang.Object> for aggregation >> ('_1).sum. Only numeric data types supported. >> at >> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:50) >> at >> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:31) >> at >> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:34) >> at >> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:31) >> at scala.collection.immutable.List.foreach(List.scala:318) >> at org.apache.flink.api.table.trees.Analyzer.analyze(Analyzer.scala:31) >> at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59) >> at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59) >> at >> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >> at >> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) >> at >> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) >> at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) >> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) >> at scala.collection.AbstractTraversable.map(Traversable.scala:105) >> at org.apache.flink.api.table.Table.select(Table.scala:59) >> at >> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135) >> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >> at >> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >> at >> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >> at >> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) >> at >> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) >> at >> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) >> at >> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) >> at >> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) >> at >> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) >> at org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48) >> at org.junit.rules.RunRules.evaluate(RunRules.java:20) >> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) >> at >> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) >> at >> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) >> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) >> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) >> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) >> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) >> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) >> at org.junit.runners.ParentRunner.run(ParentRunner.java:309) >> at org.junit.runners.Suite.runChild(Suite.java:127) >> at org.junit.runners.Suite.runChild(Suite.java:26) >> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) >> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) >> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) >> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) >> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) >> at >> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) >> at >> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) >> at org.junit.runners.ParentRunner.run(ParentRunner.java:309) >> at org.junit.runner.JUnitCore.run(JUnitCore.java:160) >> at >> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78) >> at >> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212) >> at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68) >> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >> at >> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >> at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140) >> >> >> The ExecutionEnvironment.fromCollection method also throws an error when >> the collection contains a null. >> >> Could you please point out what I am doing wrong? How do we create a >> Table with null values? >> >> In our application, we load a file and transform each line into a Row >> resulting in a DataSet[Row]. This DataSet[Row] is then converted into >> Table. Should I use the same approach for the test case? >> >> >> Thanks, >> Shiti >> >> >> >> >> >> >> >> >> >> On Sun, Jun 14, 2015 at 4:10 PM, Shiti Saxena <ssaxena....@gmail.com> >> wrote: >> >>> I'll do the fix >>> >>> On Sun, Jun 14, 2015 at 12:42 AM, Aljoscha Krettek <aljos...@apache.org> >>> wrote: >>> >>>> I merged your PR for the RowSerializer. Teaching the aggregators to >>>> deal with null values should be a very simple fix in >>>> ExpressionAggregateFunction.scala. There it is simply always aggregating >>>> the values without checking whether they are null. If you want you can also >>>> fix that or I can quickly fix it. >>>> >>>> On Thu, 11 Jun 2015 at 10:40 Aljoscha Krettek <aljos...@apache.org> >>>> wrote: >>>> >>>>> Cool, good to hear. >>>>> >>>>> The PojoSerializer already handles null fields. The RowSerializer can >>>>> be modified in pretty much the same way. So you should start by looking at >>>>> the copy()/serialize()/deserialize() methods of PojoSerializer and then >>>>> modify RowSerializer in a similar way. >>>>> >>>>> You can also send me a private mail if you want more in-depth >>>>> explanations. >>>>> >>>>> On Thu, 11 Jun 2015 at 09:33 Till Rohrmann <trohrm...@apache.org> >>>>> wrote: >>>>> >>>>>> Hi Shiti, >>>>>> >>>>>> here is the issue [1]. >>>>>> >>>>>> Cheers, >>>>>> Till >>>>>> >>>>>> [1] https://issues.apache.org/jira/browse/FLINK-2203 >>>>>> >>>>>> On Thu, Jun 11, 2015 at 8:42 AM Shiti Saxena <ssaxena....@gmail.com> >>>>>> wrote: >>>>>> >>>>>>> Hi Aljoscha, >>>>>>> >>>>>>> Could you please point me to the JIRA tickets? If you could provide >>>>>>> some guidance on how to resolve these, I will work on them and raise a >>>>>>> pull-request. >>>>>>> >>>>>>> Thanks, >>>>>>> Shiti >>>>>>> >>>>>>> On Thu, Jun 11, 2015 at 11:31 AM, Aljoscha Krettek < >>>>>>> aljos...@apache.org> wrote: >>>>>>> >>>>>>>> Hi, >>>>>>>> yes, I think the problem is that the RowSerializer does not support >>>>>>>> null-values. I think we can add support for this, I will open a Jira >>>>>>>> issue. >>>>>>>> >>>>>>>> Another problem I then see is that the aggregations can not >>>>>>>> properly deal with null-values. This would need separate support. >>>>>>>> >>>>>>>> Regards, >>>>>>>> Aljoscha >>>>>>>> >>>>>>>> On Thu, 11 Jun 2015 at 06:41 Shiti Saxena <ssaxena....@gmail.com> >>>>>>>> wrote: >>>>>>>> >>>>>>>>> Hi, >>>>>>>>> >>>>>>>>> In our project, we are using the Flink Table API and are facing >>>>>>>>> the following issues, >>>>>>>>> >>>>>>>>> We load data from a CSV file and create a DataSet[Row]. The CSV >>>>>>>>> file can also have invalid entries in some of the fields which we >>>>>>>>> replace >>>>>>>>> with null when building the DataSet[Row]. >>>>>>>>> >>>>>>>>> This DataSet[Row] is later on transformed to Table whenever >>>>>>>>> required and specific operation such as select or aggregate, etc are >>>>>>>>> performed. >>>>>>>>> >>>>>>>>> When a null value is encountered, we get a null pointer exception >>>>>>>>> and the whole job fails. (We can see this by calling collect on the >>>>>>>>> resulting DataSet). >>>>>>>>> >>>>>>>>> The error message is similar to, >>>>>>>>> >>>>>>>>> Job execution failed. >>>>>>>>> org.apache.flink.runtime.client.JobExecutionException: Job >>>>>>>>> execution failed. >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315) >>>>>>>>> at >>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33) >>>>>>>>> at >>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33) >>>>>>>>> at >>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29) >>>>>>>>> at >>>>>>>>> scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29) >>>>>>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94) >>>>>>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) >>>>>>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487) >>>>>>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254) >>>>>>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221) >>>>>>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231) >>>>>>>>> at >>>>>>>>> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >>>>>>>>> at >>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >>>>>>>>> at >>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >>>>>>>>> at >>>>>>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >>>>>>>>> Caused by: java.lang.NullPointerException >>>>>>>>> at >>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63) >>>>>>>>> at >>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27) >>>>>>>>> at >>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80) >>>>>>>>> at >>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51) >>>>>>>>> at org.apache.flink.runtime.io >>>>>>>>> .network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76) >>>>>>>>> at org.apache.flink.runtime.io >>>>>>>>> .network.api.writer.RecordWriter.emit(RecordWriter.java:83) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78) >>>>>>>>> at >>>>>>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177) >>>>>>>>> at org.apache.flink.runtime.taskmanager.Task.run(Task.java:559) >>>>>>>>> at java.lang.Thread.run(Thread.java:724) >>>>>>>>> >>>>>>>>> Could this be because the RowSerializer does not support null >>>>>>>>> values? (Similar to Flink-629 >>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-629> ) >>>>>>>>> >>>>>>>>> Currently, to overcome this issue, we are ignoring all the rows >>>>>>>>> which may have null values. For example, we have a method cleanData >>>>>>>>> defined >>>>>>>>> as, >>>>>>>>> >>>>>>>>> def cleanData(table:Table, relevantColumns:Seq[String]):Table = { >>>>>>>>> val whereClause: String = relevantColumns.map{ >>>>>>>>> cName=> >>>>>>>>> s"$cName.isNotNull" >>>>>>>>> }.mkString(" && ") >>>>>>>>> >>>>>>>>> val result :Table = >>>>>>>>> table.select(relevantColumns.mkString(",")).where(whereClause) >>>>>>>>> result >>>>>>>>> } >>>>>>>>> >>>>>>>>> Before operating on any Table, we use this method and then >>>>>>>>> continue with task. >>>>>>>>> >>>>>>>>> Is this the right way to handle this? If not please let me know >>>>>>>>> how to go about it. >>>>>>>>> >>>>>>>>> >>>>>>>>> Thanks, >>>>>>>>> Shiti >>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>> >>> >>