Yes, what I meant was to have a single bit mask that is written before all
the fields are written. Then, for example, 1011 would mean that field 1, 2,
and 4 are non-null while field 3 is null.

On Tue, 16 Jun 2015 at 10:24 Shiti Saxena <ssaxena....@gmail.com> wrote:

> Can we use 0(false) and 1(true)?
>
> On Tue, Jun 16, 2015 at 1:32 PM, Aljoscha Krettek <aljos...@apache.org>
> wrote:
>
>> One more thing, it would be good if the TupleSerializer didn't write a
>> boolean for every field. A single integer could be used where one bit
>> specifies if a given field is null or not. (Maybe we should also add this
>> to the RowSerializer in the future.)
>>
>> On Tue, 16 Jun 2015 at 07:30 Aljoscha Krettek <aljos...@apache.org>
>> wrote:
>>
>>> I think you can work on it. By the way, there are actually two
>>> serializers. For Scala, CaseClassSerializer is responsible for tuples as
>>> well. In Java, TupleSerializer is responsible for, well, Tuples.
>>>
>>> On Tue, 16 Jun 2015 at 06:25 Shiti Saxena <ssaxena....@gmail.com> wrote:
>>>
>>>> Hi,
>>>>
>>>> Can I work on the issue with TupleSerializer or is someone working on
>>>> it?
>>>>
>>>> On Mon, Jun 15, 2015 at 11:20 AM, Aljoscha Krettek <aljos...@apache.org
>>>> > wrote:
>>>>
>>>>> Hi,
>>>>> the reason why this doesn't work is that the TupleSerializer cannot
>>>>> deal with null values:
>>>>>
>>>>> @Test
>>>>> def testAggregationWithNull(): Unit = {
>>>>>
>>>>>  val env = ExecutionEnvironment.getExecutionEnvironment
>>>>>  val table = env.fromElements[(Integer, String)](
>>>>>  (123, "a"), (234, "b"), (345, "c"), (null, "d")).toTable
>>>>>
>>>>>  val total = table.select('_1.sum).collect().head.productElement(0)
>>>>>  assertEquals(total, 702)
>>>>> }
>>>>>
>>>>> it would have to modified in a similar way to the PojoSerializer and 
>>>>> RowSerializer. You could either leave the tests as they are now in you 
>>>>> pull request or also modify the TupleSerializer. Both seem fine to me.
>>>>>
>>>>> Cheers,
>>>>>
>>>>> Aljoscha
>>>>>
>>>>>
>>>>> On Sun, 14 Jun 2015 at 20:28 Shiti Saxena <ssaxena....@gmail.com> wrote:
>>>>>
>>>>> Hi,
>>>>>>
>>>>>> Re-writing the test in the following manner works. But I am not sure
>>>>>> if this is the correct way.
>>>>>>
>>>>>> def testAggregationWithNull(): Unit = {
>>>>>>
>>>>>>     val env = ExecutionEnvironment.getExecutionEnvironment
>>>>>>     val dataSet = env.fromElements[(Integer, String)]((123, "a"),
>>>>>> (234, "b"), (345, "c"), (0, "d"))
>>>>>>
>>>>>>     implicit val rowInfo: TypeInformation[Row] = new RowTypeInfo(
>>>>>>       Seq(BasicTypeInfo.INT_TYPE_INFO,
>>>>>> BasicTypeInfo.STRING_TYPE_INFO), Seq("id", "name"))
>>>>>>
>>>>>>     val rowDataSet = dataSet.map {
>>>>>>       entry =>
>>>>>>         val row = new Row(2)
>>>>>>         val amount = if(entry._1<100) null else entry._1
>>>>>>         row.setField(0, amount)
>>>>>>         row.setField(1, entry._2)
>>>>>>         row
>>>>>>     }
>>>>>>
>>>>>>     val total =
>>>>>> rowDataSet.toTable.select('id.sum).collect().head.productElement(0)
>>>>>>     assertEquals(total, 702)
>>>>>>   }
>>>>>>
>>>>>>
>>>>>>
>>>>>> On Sun, Jun 14, 2015 at 11:42 PM, Shiti Saxena <ssaxena....@gmail.com
>>>>>> > wrote:
>>>>>>
>>>>>>> Hi,
>>>>>>>
>>>>>>> For
>>>>>>>
>>>>>>> val table = env.fromElements[(Integer, String)]((123, "a"), (234,
>>>>>>> "b"), (345, "c"), (null, "d")).toTable
>>>>>>>
>>>>>>> I get the following error,
>>>>>>>
>>>>>>> Error translating node 'Data Source "at
>>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.fromElements(ExecutionEnvironment.scala:505)
>>>>>>> (org.apache.flink.api.java.io.CollectionInputFormat)" : NONE [[
>>>>>>> GlobalProperties [partitioning=RANDOM_PARTITIONED] ]] [[ LocalProperties
>>>>>>> [ordering=null, grouped=null, unique=null] ]]': null
>>>>>>> org.apache.flink.optimizer.CompilerException: Error translating node
>>>>>>> 'Data Source "at
>>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.fromElements(ExecutionEnvironment.scala:505)
>>>>>>> (org.apache.flink.api.java.io.CollectionInputFormat)" : NONE [[
>>>>>>> GlobalProperties [partitioning=RANDOM_PARTITIONED] ]] [[ LocalProperties
>>>>>>> [ordering=null, grouped=null, unique=null] ]]': null
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:360)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:103)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SourcePlanNode.accept(SourcePlanNode.java:87)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plan.OptimizedPlan.accept(OptimizedPlan.java:127)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.compileJobGraph(JobGraphGenerator.java:170)
>>>>>>> at
>>>>>>> org.apache.flink.test.util.TestEnvironment.execute(TestEnvironment.java:52)
>>>>>>> at
>>>>>>> org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:789)
>>>>>>> at
>>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.execute(ExecutionEnvironment.scala:576)
>>>>>>> at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:544)
>>>>>>> at
>>>>>>> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135)
>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>> at
>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>> at
>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>>> at
>>>>>>> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
>>>>>>> at
>>>>>>> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
>>>>>>> at
>>>>>>> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
>>>>>>> at
>>>>>>> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
>>>>>>> at
>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>> at
>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>> at
>>>>>>> org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48)
>>>>>>> at org.junit.rules.RunRules.evaluate(RunRules.java:20)
>>>>>>> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
>>>>>>> at
>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
>>>>>>> at
>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:127)
>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:26)
>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>> at
>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>> at
>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>> at org.junit.runner.JUnitCore.run(JUnitCore.java:160)
>>>>>>> at
>>>>>>> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
>>>>>>> at
>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
>>>>>>> at
>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>> at
>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>> at
>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>>> at
>>>>>>> com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
>>>>>>> Caused by: java.lang.NullPointerException
>>>>>>> at
>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>>>>> at
>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>>>>> at
>>>>>>> org.apache.flink.api.scala.typeutils.CaseClassSerializer.serialize(CaseClassSerializer.scala:89)
>>>>>>> at
>>>>>>> org.apache.flink.api.scala.typeutils.CaseClassSerializer.serialize(CaseClassSerializer.scala:29)
>>>>>>> at org.apache.flink.api.java.io
>>>>>>> .CollectionInputFormat.writeObject(CollectionInputFormat.java:88)
>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>> at
>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>> at
>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>>> at
>>>>>>> java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:988)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1493)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1429)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1175)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1541)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1506)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1429)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1175)
>>>>>>> at
>>>>>>> java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
>>>>>>> at
>>>>>>> org.apache.flink.util.InstantiationUtil.serializeObject(InstantiationUtil.java:314)
>>>>>>> at
>>>>>>> org.apache.flink.util.InstantiationUtil.writeObjectToConfig(InstantiationUtil.java:268)
>>>>>>> at
>>>>>>> org.apache.flink.runtime.operators.util.TaskConfig.setStubWrapper(TaskConfig.java:273)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.createDataSourceVertex(JobGraphGenerator.java:853)
>>>>>>> at
>>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:260)
>>>>>>> ... 55 more
>>>>>>>
>>>>>>>
>>>>>>> Does this mean that the collect method is being called before doing
>>>>>>> the aggregation? Is this because base serializers do not handle null 
>>>>>>> values
>>>>>>> like POJOSerializer? And is that why fromCollection does not support
>>>>>>> collections with null values?
>>>>>>>
>>>>>>> Or I could write the test using a file load if thats alright.
>>>>>>>
>>>>>>>
>>>>>>> On Sun, Jun 14, 2015 at 11:11 PM, Aljoscha Krettek <
>>>>>>> aljos...@apache.org> wrote:
>>>>>>>
>>>>>>>> Hi,
>>>>>>>> sorry, my mail client sent before I was done.
>>>>>>>>
>>>>>>>> I think the problem is that the Scala compiler derives a wrong type
>>>>>>>> for this statement:
>>>>>>>> val table = env.fromElements((123, "a"), (234, "b"), (345, "c"),
>>>>>>>> (null, "d")).toTable
>>>>>>>>
>>>>>>>> Because of the null value it derives (Any, String) as the type if
>>>>>>>> you do it like this, I think it should work:
>>>>>>>> val table = env.fromElements[(Integer, String)]((123, "a"), (234,
>>>>>>>> "b"), (345, "c"), (null, "d")).toTable
>>>>>>>>
>>>>>>>> I used Integer instead of Int because Scala will complain that null
>>>>>>>> is not a valid value for Int otherwise.
>>>>>>>>
>>>>>>>> Cheers,
>>>>>>>> Aljoscha
>>>>>>>>
>>>>>>>>
>>>>>>>> On Sun, 14 Jun 2015 at 19:34 Aljoscha Krettek <aljos...@apache.org>
>>>>>>>> wrote:
>>>>>>>>
>>>>>>>>> Hi,
>>>>>>>>> I think the problem is that the Scala compiler derives a wrong
>>>>>>>>> type for this statement:
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> On Sun, 14 Jun 2015 at 18:28 Shiti Saxena <ssaxena....@gmail.com>
>>>>>>>>> wrote:
>>>>>>>>>
>>>>>>>>>> Hi Aljoscha,
>>>>>>>>>>
>>>>>>>>>> I created the issue FLINK-2210
>>>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-2210> for aggregate
>>>>>>>>>> on null. I made changes to ExpressionAggregateFunction to handle 
>>>>>>>>>> ignore
>>>>>>>>>> null values. But I am unable to create a Table with null values in 
>>>>>>>>>> tests.
>>>>>>>>>>
>>>>>>>>>> The code I used is,
>>>>>>>>>>
>>>>>>>>>> def testAggregationWithNull(): Unit = {
>>>>>>>>>>
>>>>>>>>>>     val env = ExecutionEnvironment.getExecutionEnvironment
>>>>>>>>>>     val table = env.fromElements((123, "a"), (234, "b"), (345,
>>>>>>>>>> "c"), (null, "d")).toTable
>>>>>>>>>>
>>>>>>>>>>     val total =
>>>>>>>>>> table.select('_1.sum).collect().head.productElement(0)
>>>>>>>>>>     assertEquals(total, 702)
>>>>>>>>>>   }
>>>>>>>>>>
>>>>>>>>>> and the error i get is,
>>>>>>>>>>
>>>>>>>>>> org.apache.flink.api.table.ExpressionException: Invalid
>>>>>>>>>> expression "('_1).sum": Unsupported type 
>>>>>>>>>> GenericType<java.lang.Object> for
>>>>>>>>>> aggregation ('_1).sum. Only numeric data types supported.
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:50)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:31)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:34)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:31)
>>>>>>>>>> at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.trees.Analyzer.analyze(Analyzer.scala:31)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>>>>>>> at org.apache.flink.api.table.Table.select(Table.scala:59)
>>>>>>>>>> at
>>>>>>>>>> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135)
>>>>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>>>>> at
>>>>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>>>>> at
>>>>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>>>>> at
>>>>>>>>>> org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48)
>>>>>>>>>> at org.junit.rules.RunRules.evaluate(RunRules.java:20)
>>>>>>>>>> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
>>>>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:127)
>>>>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:26)
>>>>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>>>>> at
>>>>>>>>>> org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>>>>> at
>>>>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>>>>> at org.junit.runner.JUnitCore.run(JUnitCore.java:160)
>>>>>>>>>> at
>>>>>>>>>> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
>>>>>>>>>> at
>>>>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
>>>>>>>>>> at
>>>>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
>>>>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>>>>> at
>>>>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>>>>> at
>>>>>>>>>> com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> The ExecutionEnvironment.fromCollection method also throws an
>>>>>>>>>> error when the collection contains a null.
>>>>>>>>>>
>>>>>>>>>> Could you please point out what I am doing wrong? How do we
>>>>>>>>>> create a Table with null values?
>>>>>>>>>>
>>>>>>>>>> In our application, we load a file and transform each line into a
>>>>>>>>>> Row resulting in a DataSet[Row]. This DataSet[Row] is then converted 
>>>>>>>>>> into
>>>>>>>>>> Table. Should I use the same approach for the test case?
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> Thanks,
>>>>>>>>>> Shiti
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> On Sun, Jun 14, 2015 at 4:10 PM, Shiti Saxena <
>>>>>>>>>> ssaxena....@gmail.com> wrote:
>>>>>>>>>>
>>>>>>>>>>> I'll do the fix
>>>>>>>>>>>
>>>>>>>>>>> On Sun, Jun 14, 2015 at 12:42 AM, Aljoscha Krettek <
>>>>>>>>>>> aljos...@apache.org> wrote:
>>>>>>>>>>>
>>>>>>>>>>>> I merged your PR for the RowSerializer. Teaching the
>>>>>>>>>>>> aggregators to deal with null values should be a very simple fix in
>>>>>>>>>>>> ExpressionAggregateFunction.scala. There it is simply always 
>>>>>>>>>>>> aggregating
>>>>>>>>>>>> the values without checking whether they are null. If you want you 
>>>>>>>>>>>> can also
>>>>>>>>>>>> fix that or I can quickly fix it.
>>>>>>>>>>>>
>>>>>>>>>>>> On Thu, 11 Jun 2015 at 10:40 Aljoscha Krettek <
>>>>>>>>>>>> aljos...@apache.org> wrote:
>>>>>>>>>>>>
>>>>>>>>>>>>> Cool, good to hear.
>>>>>>>>>>>>>
>>>>>>>>>>>>> The PojoSerializer already handles null fields. The
>>>>>>>>>>>>> RowSerializer can be modified in pretty much the same way. So you 
>>>>>>>>>>>>> should
>>>>>>>>>>>>> start by looking at the copy()/serialize()/deserialize() methods 
>>>>>>>>>>>>> of
>>>>>>>>>>>>> PojoSerializer and then modify RowSerializer in a similar way.
>>>>>>>>>>>>>
>>>>>>>>>>>>> You can also send me a private mail if you want more in-depth
>>>>>>>>>>>>> explanations.
>>>>>>>>>>>>>
>>>>>>>>>>>>> On Thu, 11 Jun 2015 at 09:33 Till Rohrmann <
>>>>>>>>>>>>> trohrm...@apache.org> wrote:
>>>>>>>>>>>>>
>>>>>>>>>>>>>> Hi Shiti,
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> here is the issue [1].
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Cheers,
>>>>>>>>>>>>>> Till
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> [1] https://issues.apache.org/jira/browse/FLINK-2203
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> On Thu, Jun 11, 2015 at 8:42 AM Shiti Saxena <
>>>>>>>>>>>>>> ssaxena....@gmail.com> wrote:
>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Hi Aljoscha,
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Could you please point me to the JIRA tickets? If you could
>>>>>>>>>>>>>>> provide some guidance on how to resolve these, I will work on 
>>>>>>>>>>>>>>> them and
>>>>>>>>>>>>>>> raise a pull-request.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Thanks,
>>>>>>>>>>>>>>> Shiti
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> On Thu, Jun 11, 2015 at 11:31 AM, Aljoscha Krettek <
>>>>>>>>>>>>>>> aljos...@apache.org> wrote:
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Hi,
>>>>>>>>>>>>>>>> yes, I think the problem is that the RowSerializer does not
>>>>>>>>>>>>>>>> support null-values. I think we can add support for this, I 
>>>>>>>>>>>>>>>> will open a
>>>>>>>>>>>>>>>> Jira issue.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Another problem I then see is that the aggregations can not
>>>>>>>>>>>>>>>> properly deal with null-values. This would need separate 
>>>>>>>>>>>>>>>> support.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Regards,
>>>>>>>>>>>>>>>> Aljoscha
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> On Thu, 11 Jun 2015 at 06:41 Shiti Saxena <
>>>>>>>>>>>>>>>> ssaxena....@gmail.com> wrote:
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Hi,
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> In our project, we are using the Flink Table API and are
>>>>>>>>>>>>>>>>> facing the following issues,
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> We load data from a CSV file and create a DataSet[Row].
>>>>>>>>>>>>>>>>> The CSV file can also have invalid entries in some of the 
>>>>>>>>>>>>>>>>> fields which we
>>>>>>>>>>>>>>>>> replace with null when building the DataSet[Row].
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> This DataSet[Row] is later on transformed to Table
>>>>>>>>>>>>>>>>> whenever required and specific operation such as select or 
>>>>>>>>>>>>>>>>> aggregate, etc
>>>>>>>>>>>>>>>>> are performed.
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> When a null value is encountered, we get a null pointer
>>>>>>>>>>>>>>>>> exception and the whole job fails. (We can see this by 
>>>>>>>>>>>>>>>>> calling collect on
>>>>>>>>>>>>>>>>> the resulting DataSet).
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> The error message is similar to,
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Job execution failed.
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.client.JobExecutionException: Job
>>>>>>>>>>>>>>>>> execution failed.
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29)
>>>>>>>>>>>>>>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94)
>>>>>>>>>>>>>>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
>>>>>>>>>>>>>>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487)
>>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
>>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221)
>>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>>>>>>>>>>>>>>>> Caused by: java.lang.NullPointerException
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51)
>>>>>>>>>>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>>>>>>>>>>> .network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76)
>>>>>>>>>>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>>>>>>>>>>> .network.api.writer.RecordWriter.emit(RecordWriter.java:83)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177)
>>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>>> org.apache.flink.runtime.taskmanager.Task.run(Task.java:559)
>>>>>>>>>>>>>>>>> at java.lang.Thread.run(Thread.java:724)
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Could this be because the RowSerializer does not support
>>>>>>>>>>>>>>>>> null values? (Similar to Flink-629
>>>>>>>>>>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-629> )
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Currently, to overcome this issue, we are ignoring all the
>>>>>>>>>>>>>>>>> rows which may have null values. For example, we have a 
>>>>>>>>>>>>>>>>> method cleanData
>>>>>>>>>>>>>>>>> defined as,
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> def cleanData(table:Table,
>>>>>>>>>>>>>>>>> relevantColumns:Seq[String]):Table = {
>>>>>>>>>>>>>>>>>     val whereClause: String = relevantColumns.map{
>>>>>>>>>>>>>>>>>         cName=>
>>>>>>>>>>>>>>>>>             s"$cName.isNotNull"
>>>>>>>>>>>>>>>>>     }.mkString(" && ")
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>     val result :Table =
>>>>>>>>>>>>>>>>> table.select(relevantColumns.mkString(",")).where(whereClause)
>>>>>>>>>>>>>>>>>     result
>>>>>>>>>>>>>>>>> }
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Before operating on any Table, we use this method and then
>>>>>>>>>>>>>>>>> continue with task.
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Is this the right way to handle this? If not please let me
>>>>>>>>>>>>>>>>> know how to go about it.
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>> Thanks,
>>>>>>>>>>>>>>>>> Shiti
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>
>>>>>>>
>>>>>>
>>>>
>

Reply via email to