Hi,
I think the problem is that the Scala compiler derives a wrong type for
this statement:



On Sun, 14 Jun 2015 at 18:28 Shiti Saxena <ssaxena....@gmail.com> wrote:

> Hi Aljoscha,
>
> I created the issue FLINK-2210
> <https://issues.apache.org/jira/browse/FLINK-2210> for aggregate on null.
> I made changes to ExpressionAggregateFunction to handle ignore null values.
> But I am unable to create a Table with null values in tests.
>
> The code I used is,
>
> def testAggregationWithNull(): Unit = {
>
>     val env = ExecutionEnvironment.getExecutionEnvironment
>     val table = env.fromElements((123, "a"), (234, "b"), (345, "c"),
> (null, "d")).toTable
>
>     val total = table.select('_1.sum).collect().head.productElement(0)
>     assertEquals(total, 702)
>   }
>
> and the error i get is,
>
> org.apache.flink.api.table.ExpressionException: Invalid expression
> "('_1).sum": Unsupported type GenericType<java.lang.Object> for aggregation
> ('_1).sum. Only numeric data types supported.
> at
> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:50)
> at
> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:31)
> at
> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:34)
> at
> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:31)
> at scala.collection.immutable.List.foreach(List.scala:318)
> at org.apache.flink.api.table.trees.Analyzer.analyze(Analyzer.scala:31)
> at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
> at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
> at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
> at org.apache.flink.api.table.Table.select(Table.scala:59)
> at
> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at
> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
> at
> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
> at
> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
> at
> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
> at
> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
> at
> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
> at org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48)
> at org.junit.rules.RunRules.evaluate(RunRules.java:20)
> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
> at
> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
> at
> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
> at org.junit.runners.Suite.runChild(Suite.java:127)
> at org.junit.runners.Suite.runChild(Suite.java:26)
> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
> at
> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
> at
> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
> at org.junit.runner.JUnitCore.run(JUnitCore.java:160)
> at
> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
> at
> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
> at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
>
>
> The ExecutionEnvironment.fromCollection method also throws an error when
> the collection contains a null.
>
> Could you please point out what I am doing wrong? How do we create a Table
> with null values?
>
> In our application, we load a file and transform each line into a Row
> resulting in a DataSet[Row]. This DataSet[Row] is then converted into
> Table. Should I use the same approach for the test case?
>
>
> Thanks,
> Shiti
>
>
>
>
>
>
>
>
>
> On Sun, Jun 14, 2015 at 4:10 PM, Shiti Saxena <ssaxena....@gmail.com>
> wrote:
>
>> I'll do the fix
>>
>> On Sun, Jun 14, 2015 at 12:42 AM, Aljoscha Krettek <aljos...@apache.org>
>> wrote:
>>
>>> I merged your PR for the RowSerializer. Teaching the aggregators to deal
>>> with null values should be a very simple fix in
>>> ExpressionAggregateFunction.scala. There it is simply always aggregating
>>> the values without checking whether they are null. If you want you can also
>>> fix that or I can quickly fix it.
>>>
>>> On Thu, 11 Jun 2015 at 10:40 Aljoscha Krettek <aljos...@apache.org>
>>> wrote:
>>>
>>>> Cool, good to hear.
>>>>
>>>> The PojoSerializer already handles null fields. The RowSerializer can
>>>> be modified in pretty much the same way. So you should start by looking at
>>>> the copy()/serialize()/deserialize() methods of PojoSerializer and then
>>>> modify RowSerializer in a similar way.
>>>>
>>>> You can also send me a private mail if you want more in-depth
>>>> explanations.
>>>>
>>>> On Thu, 11 Jun 2015 at 09:33 Till Rohrmann <trohrm...@apache.org>
>>>> wrote:
>>>>
>>>>> Hi Shiti,
>>>>>
>>>>> here is the issue [1].
>>>>>
>>>>> Cheers,
>>>>> Till
>>>>>
>>>>> [1] https://issues.apache.org/jira/browse/FLINK-2203
>>>>>
>>>>> On Thu, Jun 11, 2015 at 8:42 AM Shiti Saxena <ssaxena....@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> Hi Aljoscha,
>>>>>>
>>>>>> Could you please point me to the JIRA tickets? If you could provide
>>>>>> some guidance on how to resolve these, I will work on them and raise a
>>>>>> pull-request.
>>>>>>
>>>>>> Thanks,
>>>>>> Shiti
>>>>>>
>>>>>> On Thu, Jun 11, 2015 at 11:31 AM, Aljoscha Krettek <
>>>>>> aljos...@apache.org> wrote:
>>>>>>
>>>>>>> Hi,
>>>>>>> yes, I think the problem is that the RowSerializer does not support
>>>>>>> null-values. I think we can add support for this, I will open a Jira 
>>>>>>> issue.
>>>>>>>
>>>>>>> Another problem I then see is that the aggregations can not properly
>>>>>>> deal with null-values. This would need separate support.
>>>>>>>
>>>>>>> Regards,
>>>>>>> Aljoscha
>>>>>>>
>>>>>>> On Thu, 11 Jun 2015 at 06:41 Shiti Saxena <ssaxena....@gmail.com>
>>>>>>> wrote:
>>>>>>>
>>>>>>>> Hi,
>>>>>>>>
>>>>>>>> In our project, we are using the Flink Table API and are facing the
>>>>>>>> following issues,
>>>>>>>>
>>>>>>>> We load data from a CSV file and create a DataSet[Row]. The CSV
>>>>>>>> file can also have invalid entries in some of the fields which we 
>>>>>>>> replace
>>>>>>>> with null when building the DataSet[Row].
>>>>>>>>
>>>>>>>> This DataSet[Row] is later on transformed to Table whenever
>>>>>>>> required and specific operation such as select or aggregate, etc are
>>>>>>>> performed.
>>>>>>>>
>>>>>>>> When a null value is encountered, we get a null pointer exception
>>>>>>>> and the whole job fails. (We can see this by calling collect on the
>>>>>>>> resulting DataSet).
>>>>>>>>
>>>>>>>> The error message is similar to,
>>>>>>>>
>>>>>>>> Job execution failed.
>>>>>>>> org.apache.flink.runtime.client.JobExecutionException: Job
>>>>>>>> execution failed.
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315)
>>>>>>>> at
>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
>>>>>>>> at
>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
>>>>>>>> at
>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29)
>>>>>>>> at
>>>>>>>> scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29)
>>>>>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94)
>>>>>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
>>>>>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487)
>>>>>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
>>>>>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221)
>>>>>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
>>>>>>>> at
>>>>>>>> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>>>>>>> at
>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>>>>>>> at
>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>>>>>>> at
>>>>>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>>>>>>> Caused by: java.lang.NullPointerException
>>>>>>>> at
>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>>>>>> at
>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>>>>>> at
>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80)
>>>>>>>> at
>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51)
>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>> .network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76)
>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>> .network.api.writer.RecordWriter.emit(RecordWriter.java:83)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>> at
>>>>>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177)
>>>>>>>> at org.apache.flink.runtime.taskmanager.Task.run(Task.java:559)
>>>>>>>> at java.lang.Thread.run(Thread.java:724)
>>>>>>>>
>>>>>>>> Could this be because the RowSerializer does not support null
>>>>>>>> values? (Similar to Flink-629
>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-629> )
>>>>>>>>
>>>>>>>> Currently, to overcome this issue, we are ignoring all the rows
>>>>>>>> which may have null values. For example, we have a method cleanData 
>>>>>>>> defined
>>>>>>>> as,
>>>>>>>>
>>>>>>>> def cleanData(table:Table, relevantColumns:Seq[String]):Table = {
>>>>>>>>     val whereClause: String = relevantColumns.map{
>>>>>>>>         cName=>
>>>>>>>>             s"$cName.isNotNull"
>>>>>>>>     }.mkString(" && ")
>>>>>>>>
>>>>>>>>     val result :Table =
>>>>>>>> table.select(relevantColumns.mkString(",")).where(whereClause)
>>>>>>>>     result
>>>>>>>> }
>>>>>>>>
>>>>>>>> Before operating on any Table, we use this method and then continue
>>>>>>>> with task.
>>>>>>>>
>>>>>>>> Is this the right way to handle this? If not please let me know how
>>>>>>>> to go about it.
>>>>>>>>
>>>>>>>>
>>>>>>>> Thanks,
>>>>>>>> Shiti
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>
>>
>

Reply via email to