Cool, good to hear.

The PojoSerializer already handles null fields. The RowSerializer can be
modified in pretty much the same way. So you should start by looking at the
copy()/serialize()/deserialize() methods of PojoSerializer and then modify
RowSerializer in a similar way.

You can also send me a private mail if you want more in-depth explanations.

On Thu, 11 Jun 2015 at 09:33 Till Rohrmann <trohrm...@apache.org> wrote:

> Hi Shiti,
>
> here is the issue [1].
>
> Cheers,
> Till
>
> [1] https://issues.apache.org/jira/browse/FLINK-2203
>
> On Thu, Jun 11, 2015 at 8:42 AM Shiti Saxena <ssaxena....@gmail.com>
> wrote:
>
>> Hi Aljoscha,
>>
>> Could you please point me to the JIRA tickets? If you could provide some
>> guidance on how to resolve these, I will work on them and raise a
>> pull-request.
>>
>> Thanks,
>> Shiti
>>
>> On Thu, Jun 11, 2015 at 11:31 AM, Aljoscha Krettek <aljos...@apache.org>
>> wrote:
>>
>>> Hi,
>>> yes, I think the problem is that the RowSerializer does not support
>>> null-values. I think we can add support for this, I will open a Jira issue.
>>>
>>> Another problem I then see is that the aggregations can not properly
>>> deal with null-values. This would need separate support.
>>>
>>> Regards,
>>> Aljoscha
>>>
>>> On Thu, 11 Jun 2015 at 06:41 Shiti Saxena <ssaxena....@gmail.com> wrote:
>>>
>>>> Hi,
>>>>
>>>> In our project, we are using the Flink Table API and are facing the
>>>> following issues,
>>>>
>>>> We load data from a CSV file and create a DataSet[Row]. The CSV file
>>>> can also have invalid entries in some of the fields which we replace with
>>>> null when building the DataSet[Row].
>>>>
>>>> This DataSet[Row] is later on transformed to Table whenever required
>>>> and specific operation such as select or aggregate, etc are performed.
>>>>
>>>> When a null value is encountered, we get a null pointer exception and
>>>> the whole job fails. (We can see this by calling collect on the resulting
>>>> DataSet).
>>>>
>>>> The error message is similar to,
>>>>
>>>> Job execution failed.
>>>> org.apache.flink.runtime.client.JobExecutionException: Job execution
>>>> failed.
>>>> at
>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315)
>>>> at
>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
>>>> at
>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
>>>> at
>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
>>>> at
>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43)
>>>> at
>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29)
>>>> at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
>>>> at
>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29)
>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
>>>> at
>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94)
>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487)
>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221)
>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
>>>> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>>> at
>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>>> at
>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>>> at
>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>>> Caused by: java.lang.NullPointerException
>>>> at
>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>> at
>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>> at
>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80)
>>>> at
>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28)
>>>> at
>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51)
>>>> at
>>>> org.apache.flink.runtime.io.network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76)
>>>> at
>>>> org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit(RecordWriter.java:83)
>>>> at
>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)
>>>> at
>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>> at
>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>> at
>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177)
>>>> at org.apache.flink.runtime.taskmanager.Task.run(Task.java:559)
>>>> at java.lang.Thread.run(Thread.java:724)
>>>>
>>>> Could this be because the RowSerializer does not support null values?
>>>> (Similar to Flink-629 <https://issues.apache.org/jira/browse/FLINK-629>
>>>>  )
>>>>
>>>> Currently, to overcome this issue, we are ignoring all the rows which
>>>> may have null values. For example, we have a method cleanData defined as,
>>>>
>>>> def cleanData(table:Table, relevantColumns:Seq[String]):Table = {
>>>>     val whereClause: String = relevantColumns.map{
>>>>         cName=>
>>>>             s"$cName.isNotNull"
>>>>     }.mkString(" && ")
>>>>
>>>>     val result :Table =
>>>> table.select(relevantColumns.mkString(",")).where(whereClause)
>>>>     result
>>>> }
>>>>
>>>> Before operating on any Table, we use this method and then continue
>>>> with task.
>>>>
>>>> Is this the right way to handle this? If not please let me know how to
>>>> go about it.
>>>>
>>>>
>>>> Thanks,
>>>> Shiti
>>>>
>>>>
>>>>
>>>>
>>

Reply via email to