There is a description/proposed fix of the problem on this trac ticket: https://trac.sagemath.org/ticket/34292
On Thursday, August 11, 2022 at 12:44:59 PM UTC-7 keirh...@gmail.com wrote: > This code: > > > > > *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = > H.algebra(GF(2))[a, b] = H.gens()* > > > > > > > > > > > > > > > > > > > > > > > > *# Produces no coercion errorprint((kH(a) + kH(b) + H.one())^2)# Produces > a coercion error in all cases belowtry: print((kH(a) + kH(b) + > kH(kH.one()))^2)except: print("Fail 1") passtry: print((kH(a) + > kH(b) + kH.one())^2)except: print("Fail 2") passtry: print((kH(a) > + kH(b) + kH.group().one())^2)except: print("Fail 3") passtry: > print((kH(a) + kH(b) + kH(kH.group().one()))^2)except: print("Fail 4") > pass* > > produces the output: > > *(5,7,6)(12,18,14)* > *Fail 1* > *Fail 2* > *Fail 3* > *Fail 4* > > The thing that's irritating is that using H.one() in the sum is fine; > using kH.group().one() is not. But I fully admit that I may just not > understand what the right behavior should be. > On Saturday, August 6, 2022 at 11:40:03 PM UTC-4 trevor...@gmail.com > wrote: > >> Is the x you give in these examples the same x as above? I’m worried >> (maybe needlessly) about if the x you give includes a summand of kH.one(). >> If the x you give does not include a summand of one, then the behavior you >> described is consistent with what I think the problem is. If the x in the >> new example doesn’t have a summand of kH.one() then I’m misunderstanding >> something. >> >> On Sat, Aug 6, 2022 at 6:00 PM keirh...@gmail.com <keirh...@gmail.com> >> wrote: >> >>> Thanks for this workaround. I was passing the group algebra to a >>> function and then accessing the base group like so: >>> >>> kH.group() >>> >>> Both of the following cause the coercion error: >>> >>> kH.one() * x >>> kH.group().one() * x >>> >>> But this works fine: >>> >>> H.one()*x >>> >>> I will just have to pass the original group along as well. >>> >>> --Keir >>> >>> On Saturday, August 6, 2022 at 2:06:51 PM UTC-4 trevor...@gmail.com >>> wrote: >>> >>>> I can reproduce this on 9.7.beta7. >>>> >>>> The problem is that the parent is not understood to be the same (even >>>> though it clearly is). A workaround is: >>>> >>>> sage: x = kH(a) + kH(b) + kH(H.one()); x >>>> >>>> () + (5,6,7)(12,14,18) + (1,2)(3,4) >>>> >>>> sage: x*x >>>> >>>> (5,7,6)(12,18,14) >>>> >>>> >>>> Here H.one() puts the one in the right parent for the coercion >>>> framework, but this definitely looks like a bug to me, because >>>> >>>> sage: kH(a).parent() >>>> >>>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >>>> (1,2)(3,4)] over Finite Field of size 2 >>>> >>>> sage: kH.one().parent() >>>> >>>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >>>> (1,2)(3,4)] over Finite Field of size 2 >>>> >>>> sage: kH(a).parent() is kH.one().parent() >>>> >>>> True >>>> >>>> >>>> Reproducing the bug with messages on 9.7.beta7: >>>> >>>> sage: H = PermutationGroup([[(*1*,*2*), (*3*,*4*)], [(*5*,*6*,*7*),( >>>> *12*,*14*,*18*)]]) >>>> >>>> sage: kH = H.algebra(GF(*2*)) >>>> >>>> sage: H.gens() >>>> >>>> ((5,6,7)(12,14,18), (1,2)(3,4)) >>>> >>>> sage: a, b = H.gens() >>>> >>>> sage: x = kH(a) + kH(b) + kH.one(); x >>>> >>>> (5,6,7)(12,14,18) + (1,2)(3,4) + () >>>> >>>> sage: x*x >>>> >>>> >>>> --------------------------------------------------------------------------- >>>> >>>> RuntimeError Traceback (most recent call >>>> last) >>>> >>>> Input In [7], in <cell line: 1>() >>>> >>>> ----> 1 x*x >>>> >>>> >>>> File ~/Applications/sage/src/sage/structure/element.pyx:1514, in >>>> sage.structure.element.Element.__mul__() >>>> >>>> * 1512* cdef int cl = classify_elements(left, right) >>>> >>>> * 1513* if HAVE_SAME_PARENT(cl): >>>> >>>> -> 1514 return (<Element>left)._mul_(right) >>>> >>>> * 1515* if BOTH_ARE_ELEMENT(cl): >>>> >>>> * 1516* return coercion_model.bin_op(left, right, mul) >>>> >>>> >>>> File ~/Applications/sage/src/sage/structure/element.pyx:1560, in >>>> sage.structure.element.Element._mul_() >>>> >>>> * 1558* raise bin_op_exception('*', self, other) >>>> >>>> * 1559* else: >>>> >>>> -> 1560 return python_op(other) >>>> >>>> * 1561* >>>> >>>> * 1562* cdef _mul_long(self, long n): >>>> >>>> >>>> File ~/Applications/sage/src/sage/categories/coercion_methods.pyx:53, >>>> in sage.categories.coercion_methods._mul_parent() >>>> >>>> * 51* True >>>> >>>> * 52* """ >>>> >>>> ---> 53 return (<Element>self)._parent.product(self, other) >>>> >>>> >>>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, >>>> in >>>> MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply(self, >>>> >>>> left, right) >>>> >>>> * 201* *def* _product_from_product_on_basis_multiply( self, left, >>>> right ): >>>> >>>> * 202* r*"""* >>>> >>>> * 203* * Compute the product of two elements by extending* >>>> >>>> * 204* * bilinearly the method :meth:`product_on_basis`.* >>>> >>>> (...) >>>> >>>> * 213* >>>> >>>> * 214* * """* >>>> >>>> --> 215 *return* >>>> self.linear_combination((self.product_on_basis(mon_left, mon_right), >>>> coeff_left * coeff_right ) >>>> >>>> * 216* *for* (mon_left, >>>> coeff_left) *in* left.monomial_coefficients().items() >>>> >>>> * 217* *for* (mon_right, >>>> coeff_right) *in* right.monomial_coefficients().items() ) >>>> >>>> >>>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >>>> CombinatorialFreeModule.linear_combination(self, iter_of_elements_coeff, >>>> factor_on_left) >>>> >>>> * 945* *def* linear_combination(self, iter_of_elements_coeff, >>>> factor_on_left=*True*): >>>> >>>> * 946* r*"""* >>>> >>>> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >>>> >>>> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >>>> \lambda_1 +* >>>> >>>> (...) >>>> >>>> * 967* * 20*B[1] + 20*B[2]* >>>> >>>> * 968* * """* >>>> >>>> --> 969 *return* >>>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >>>> coeff) >>>> >>>> * 970* *for* >>>> element, coeff *in* iter_of_elements_coeff), >>>> >>>> * 971* >>>> factor_on_left=factor_on_left), >>>> >>>> * 972* remove_zeros=*False*) >>>> >>>> >>>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:313, in >>>> sage.data_structures.blas_dict.linear_combination() >>>> >>>> * 311* return remove_zeros(result) >>>> >>>> * 312* >>>> >>>> --> 313 cpdef dict linear_combination(dict_factor_iter, bint >>>> factor_on_left=True): >>>> >>>> * 314* r""" >>>> >>>> * 315* Return the pointwise addition of dictionaries with >>>> coefficients. >>>> >>>> >>>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:348, in >>>> sage.data_structures.blas_dict.linear_combination() >>>> >>>> * 346* cdef dict D >>>> >>>> * 347* >>>> >>>> --> 348 for D, a in dict_factor_iter: >>>> >>>> * 349* if not a: # We multiply by 0, so nothing to do >>>> >>>> * 350* continue >>>> >>>> >>>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >>>> <genexpr>(.0) >>>> >>>> * 945* *def* linear_combination(self, iter_of_elements_coeff, >>>> factor_on_left=*True*): >>>> >>>> * 946* r*"""* >>>> >>>> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >>>> >>>> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >>>> \lambda_1 +* >>>> >>>> (...) >>>> >>>> * 967* * 20*B[1] + 20*B[2]* >>>> >>>> * 968* * """* >>>> >>>> --> 969 *return* >>>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >>>> coeff) >>>> >>>> * 970* *for* >>>> element, coeff *in* iter_of_elements_coeff), >>>> >>>> * 971* >>>> factor_on_left=factor_on_left), >>>> >>>> * 972* remove_zeros=*False*) >>>> >>>> >>>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, >>>> in <genexpr>(.0) >>>> >>>> * 201* *def* _product_from_product_on_basis_multiply( self, left, >>>> right ): >>>> >>>> * 202* r*"""* >>>> >>>> * 203* * Compute the product of two elements by extending* >>>> >>>> * 204* * bilinearly the method :meth:`product_on_basis`.* >>>> >>>> (...) >>>> >>>> * 213* >>>> >>>> * 214* * """* >>>> >>>> --> 215 *return* >>>> self.linear_combination((self.product_on_basis(mon_left, mon_right), >>>> coeff_left * coeff_right ) >>>> >>>> * 216* *for* (mon_left, >>>> coeff_left) *in* left.monomial_coefficients().items() >>>> >>>> * 217* *for* (mon_right, >>>> coeff_right) *in* right.monomial_coefficients().items() ) >>>> >>>> >>>> File ~/Applications/sage/src/sage/categories/semigroups.py:957, in >>>> Semigroups.Algebras.ParentMethods.product_on_basis(self, g1, g2) >>>> >>>> * 939* *def* product_on_basis(self, g1, g2): >>>> >>>> * 940* r*"""* >>>> >>>> * 941* * Product, on basis elements, as per* >>>> >>>> * 942* * >>>> :meth:`MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()* >>>> >>>> (...) >>>> >>>> * 955* * B['ab'] + B['bdc']* >>>> >>>> * 956* * """* >>>> >>>> --> 957 *return* self.monomial(g1 * g2) >>>> >>>> >>>> File >>>> ~/Applications/sage/src/sage/groups/perm_gps/permgroup_element.pyx:1295, >>>> in >>>> sage.groups.perm_gps.permgroup_element.PermutationGroupElement.__mul__() >>>> >>>> * 1293* return prod >>>> >>>> * 1294* >>>> >>>> -> 1295 return coercion_model.bin_op(left, right, operator.mul) >>>> >>>> * 1296* >>>> >>>> * 1297* cpdef _mul_(left, _right): >>>> >>>> >>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1200, in >>>> sage.structure.coerce.CoercionModel.bin_op() >>>> >>>> * 1198* # Now coerce to a common parent and do the operation there >>>> >>>> * 1199* try: >>>> >>>> -> 1200 xy = self.canonical_coercion(x, y) >>>> >>>> * 1201* except TypeError: >>>> >>>> * 1202* self._record_exception() >>>> >>>> >>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1332, in >>>> sage.structure.coerce.CoercionModel.canonical_coercion() >>>> >>>> * 1330* if x_elt._parent is y_elt._parent: >>>> >>>> * 1331* return x_elt,y_elt >>>> >>>> -> 1332 self._coercion_error(x, x_map, x_elt, y, y_map, y_elt) >>>> >>>> * 1333* >>>> >>>> * 1334* cdef bint x_numeric = isinstance(x, (int, long, float, >>>> complex)) >>>> >>>> >>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:2031, in >>>> sage.structure.coerce.CoercionModel._coercion_error() >>>> >>>> * 2029* <class 'str'> 'g' >>>> >>>> * 2030* """ >>>> >>>> -> 2031 raise RuntimeError("""There is a bug in the coercion >>>> code in Sage. >>>> >>>> * 2032* Both x (=%r) and y (=%r) are supposed to have identical >>>> parents but they don't. >>>> >>>> * 2033* In fact, x has parent '%s' >>>> >>>> >>>> RuntimeError: There is a bug in the coercion code in Sage. >>>> >>>> Both x (=()) and y (=(5,6,7)(12,14,18)) are supposed to have identical >>>> parents but they don't. >>>> >>>> In fact, x has parent 'Permutation Group with generators >>>> [(5,6,7)(12,14,18), (1,2)(3,4)]' >>>> >>>> whereas y has parent 'Permutation Group with generators >>>> [(5,6,7)(12,14,18), (1,2)(3,4)]' >>>> >>>> Original elements () (parent Permutation Group with generators >>>> [(5,6,7)(12,14,18), (1,2)(3,4)]) and (5,6,7)(12,14,18) (parent Permutation >>>> Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and maps >>>> >>>> <class 'NoneType'> None >>>> >>>> <class 'sage.structure.coerce_maps.DefaultConvertMap_unique'> (map >>>> internal to coercion system -- copy before use) >>>> >>>> Coercion map: >>>> >>>> From: Permutation Group with generators [(5,6,7)(12,14,18), >>>> (1,2)(3,4)] >>>> >>>> To: Permutation Group with generators [(5,6,7)(12,14,18), >>>> (1,2)(3,4)] >>>> On Friday, August 5, 2022 at 4:21:09 PM UTC-7 keirh...@gmail.com wrote: >>>> >>>>> The Sage version I was using is 9.6. >>>>> >>>>> On Friday, August 5, 2022 at 7:19:48 PM UTC-4 keirh...@gmail.com >>>>> wrote: >>>>> >>>>>> When I do this: >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = >>>>>> H.algebra(GF(2))[a, b] = H.gens()x = kH(a) + kH(b) + kH.one(); >>>>>> print(x)x*x* >>>>>> >>>>>> I get an error caused by the last computation: "RuntimeError: There >>>>>> is a bug in the coercion code in Sage." (I was working in Cocalc, but >>>>>> you >>>>>> can cut and paste the code above into a SageMathCell and reproduce the >>>>>> error.) >>>>>> >>>>>> Is this really a bug, or should I be doing this differently? (I found >>>>>> the problem working with a larger group, but this simpler example above >>>>>> has >>>>>> the same issue.) >>>>>> >>>>>> Thanks -- >>>>>> >>>>>> Keir >>>>>> >>>>> -- >>> You received this message because you are subscribed to a topic in the >>> Google Groups "sage-support" group. >>> To unsubscribe from this topic, visit >>> https://groups.google.com/d/topic/sage-support/WVMuik1TICg/unsubscribe. >>> To unsubscribe from this group and all its topics, send an email to >>> sage-support...@googlegroups.com. >>> To view this discussion on the web visit >>> https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com >>> >>> <https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com?utm_medium=email&utm_source=footer> >>> . >>> >> -- >> Best, >> >> Trevor >> > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/d5f88f55-1eb0-4cb5-ae85-fd8c633e954dn%40googlegroups.com.