There is a description/proposed fix of the problem on this trac 
ticket: https://trac.sagemath.org/ticket/34292

On Thursday, August 11, 2022 at 12:44:59 PM UTC-7 keirh...@gmail.com wrote:

> This code:
>
>
>
>
> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = 
> H.algebra(GF(2))[a, b] = H.gens()*
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> *# Produces no coercion errorprint((kH(a) + kH(b) + H.one())^2)# Produces 
> a coercion error in all cases belowtry:    print((kH(a) + kH(b) + 
> kH(kH.one()))^2)except:    print("Fail 1")    passtry:    print((kH(a) + 
> kH(b) + kH.one())^2)except:    print("Fail 2")    passtry:    print((kH(a) 
> + kH(b) + kH.group().one())^2)except:    print("Fail 3")    passtry:    
> print((kH(a) + kH(b) + kH(kH.group().one()))^2)except:    print("Fail 4")  
>   pass*
>
> produces the output:
>
> *(5,7,6)(12,18,14)*
> *Fail 1*
> *Fail 2*
> *Fail 3*
> *Fail 4*
>
> The thing that's irritating is that using H.one() in the sum is fine; 
> using kH.group().one() is not. But I fully admit that I may just not 
> understand what the right behavior should be.
> On Saturday, August 6, 2022 at 11:40:03 PM UTC-4 trevor...@gmail.com 
> wrote:
>
>> Is the x you give in these examples the same x as above? I’m worried 
>> (maybe needlessly) about if the x you give includes a summand of kH.one(). 
>> If the x you give does not include a summand of one, then the behavior you 
>> described is consistent with what I think the problem is. If the x in the 
>> new example doesn’t have a summand of kH.one() then I’m misunderstanding 
>> something.
>>
>> On Sat, Aug 6, 2022 at 6:00 PM keirh...@gmail.com <keirh...@gmail.com> 
>> wrote:
>>
>>> Thanks for this workaround. I was passing the group algebra to a 
>>> function and then accessing the base group like so:
>>>
>>> kH.group()
>>>
>>> Both of the following cause the coercion error:
>>>
>>> kH.one() * x
>>> kH.group().one() * x
>>>
>>> But this works fine:
>>>
>>> H.one()*x
>>>
>>> I will just have to pass the original group along as well.
>>>
>>> --Keir
>>>
>>> On Saturday, August 6, 2022 at 2:06:51 PM UTC-4 trevor...@gmail.com 
>>> wrote:
>>>
>>>> I can reproduce this on 9.7.beta7.
>>>>
>>>> The problem is that the parent is not understood to be the same (even 
>>>> though it clearly is). A workaround is:
>>>>
>>>> sage: x = kH(a) + kH(b) + kH(H.one()); x
>>>>
>>>> () + (5,6,7)(12,14,18) + (1,2)(3,4)
>>>>
>>>> sage: x*x
>>>>
>>>> (5,7,6)(12,18,14)
>>>>
>>>>
>>>> Here H.one() puts the one in the right parent for the coercion 
>>>> framework, but this definitely looks like a bug to me, because
>>>>
>>>> sage: kH(a).parent()
>>>>
>>>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), 
>>>> (1,2)(3,4)] over Finite Field of size 2
>>>>
>>>> sage: kH.one().parent()
>>>>
>>>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), 
>>>> (1,2)(3,4)] over Finite Field of size 2
>>>>
>>>> sage: kH(a).parent() is kH.one().parent()
>>>>
>>>> True
>>>>
>>>>
>>>> Reproducing the bug with messages on 9.7.beta7:
>>>>
>>>> sage: H = PermutationGroup([[(*1*,*2*), (*3*,*4*)], [(*5*,*6*,*7*),(
>>>> *12*,*14*,*18*)]])
>>>>
>>>> sage: kH = H.algebra(GF(*2*))
>>>>
>>>> sage: H.gens()
>>>>
>>>> ((5,6,7)(12,14,18), (1,2)(3,4))
>>>>
>>>> sage: a, b = H.gens()
>>>>
>>>> sage: x = kH(a) + kH(b) + kH.one(); x
>>>>
>>>> (5,6,7)(12,14,18) + (1,2)(3,4) + ()
>>>>
>>>> sage: x*x
>>>>
>>>>
>>>> ---------------------------------------------------------------------------
>>>>
>>>> RuntimeError                              Traceback (most recent call 
>>>> last)
>>>>
>>>> Input In [7], in <cell line: 1>()
>>>>
>>>> ----> 1 x*x
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/structure/element.pyx:1514, in 
>>>> sage.structure.element.Element.__mul__()
>>>>
>>>> *   1512* cdef int cl = classify_elements(left, right)
>>>>
>>>> *   1513* if HAVE_SAME_PARENT(cl):
>>>>
>>>> -> 1514     return (<Element>left)._mul_(right)
>>>>
>>>> *   1515* if BOTH_ARE_ELEMENT(cl):
>>>>
>>>> *   1516*     return coercion_model.bin_op(left, right, mul)
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/structure/element.pyx:1560, in 
>>>> sage.structure.element.Element._mul_()
>>>>
>>>> *   1558*         raise bin_op_exception('*', self, other)
>>>>
>>>> *   1559*     else:
>>>>
>>>> -> 1560         return python_op(other)
>>>>
>>>> *   1561* 
>>>>
>>>> *   1562* cdef _mul_long(self, long n):
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/categories/coercion_methods.pyx:53, 
>>>> in sage.categories.coercion_methods._mul_parent()
>>>>
>>>> *     51*     True
>>>>
>>>> *     52* """
>>>>
>>>> ---> 53 return (<Element>self)._parent.product(self, other)
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, 
>>>> in 
>>>> MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply(self,
>>>>  
>>>> left, right)
>>>>
>>>> *    201* *def* _product_from_product_on_basis_multiply( self, left, 
>>>> right ):
>>>>
>>>> *    202*     r*"""*
>>>>
>>>> *    203* *    Compute the product of two elements by extending*
>>>>
>>>> *    204* *    bilinearly the method :meth:`product_on_basis`.*
>>>>
>>>>    (...)
>>>>
>>>> *    213* 
>>>>
>>>> *    214* *    """*
>>>>
>>>> --> 215     *return* 
>>>> self.linear_combination((self.product_on_basis(mon_left, mon_right), 
>>>> coeff_left * coeff_right )
>>>>
>>>> *    216*                                     *for* (mon_left, 
>>>> coeff_left) *in* left.monomial_coefficients().items()
>>>>
>>>> *    217*                                     *for* (mon_right, 
>>>> coeff_right) *in* right.monomial_coefficients().items() )
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in 
>>>> CombinatorialFreeModule.linear_combination(self, iter_of_elements_coeff, 
>>>> factor_on_left)
>>>>
>>>> *    945* *def* linear_combination(self, iter_of_elements_coeff, 
>>>> factor_on_left=*True*):
>>>>
>>>> *    946*     r*"""*
>>>>
>>>> *    947* *    Return the linear combination `\lambda_1 v_1 + \cdots +*
>>>>
>>>> *    948* *    \lambda_k v_k` (resp.  the linear combination `v_1 
>>>> \lambda_1 +*
>>>>
>>>>    (...)
>>>>
>>>> *    967* *        20*B[1] + 20*B[2]*
>>>>
>>>> *    968* *    """*
>>>>
>>>> --> 969     *return* 
>>>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, 
>>>> coeff)
>>>>
>>>> *    970*                                                     *for* 
>>>> element, coeff *in* iter_of_elements_coeff),
>>>>
>>>> *    971*                                                    
>>>> factor_on_left=factor_on_left),
>>>>
>>>> *    972*                            remove_zeros=*False*)
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:313, in 
>>>> sage.data_structures.blas_dict.linear_combination()
>>>>
>>>> *    311*     return remove_zeros(result)
>>>>
>>>> *    312* 
>>>>
>>>> --> 313 cpdef dict linear_combination(dict_factor_iter, bint 
>>>> factor_on_left=True):
>>>>
>>>> *    314*     r"""
>>>>
>>>> *    315*     Return the pointwise addition of dictionaries with 
>>>> coefficients.
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:348, in 
>>>> sage.data_structures.blas_dict.linear_combination()
>>>>
>>>> *    346* cdef dict D
>>>>
>>>> *    347* 
>>>>
>>>> --> 348 for D, a in dict_factor_iter:
>>>>
>>>> *    349*     if not a: # We multiply by 0, so nothing to do
>>>>
>>>> *    350*         continue
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in 
>>>> <genexpr>(.0)
>>>>
>>>> *    945* *def* linear_combination(self, iter_of_elements_coeff, 
>>>> factor_on_left=*True*):
>>>>
>>>> *    946*     r*"""*
>>>>
>>>> *    947* *    Return the linear combination `\lambda_1 v_1 + \cdots +*
>>>>
>>>> *    948* *    \lambda_k v_k` (resp.  the linear combination `v_1 
>>>> \lambda_1 +*
>>>>
>>>>    (...)
>>>>
>>>> *    967* *        20*B[1] + 20*B[2]*
>>>>
>>>> *    968* *    """*
>>>>
>>>> --> 969     *return* 
>>>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, 
>>>> coeff)
>>>>
>>>> *    970*                                                     *for* 
>>>> element, coeff *in* iter_of_elements_coeff),
>>>>
>>>> *    971*                                                    
>>>> factor_on_left=factor_on_left),
>>>>
>>>> *    972*                            remove_zeros=*False*)
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, 
>>>> in <genexpr>(.0)
>>>>
>>>> *    201* *def* _product_from_product_on_basis_multiply( self, left, 
>>>> right ):
>>>>
>>>> *    202*     r*"""*
>>>>
>>>> *    203* *    Compute the product of two elements by extending*
>>>>
>>>> *    204* *    bilinearly the method :meth:`product_on_basis`.*
>>>>
>>>>    (...)
>>>>
>>>> *    213* 
>>>>
>>>> *    214* *    """*
>>>>
>>>> --> 215     *return* 
>>>> self.linear_combination((self.product_on_basis(mon_left, mon_right), 
>>>> coeff_left * coeff_right )
>>>>
>>>> *    216*                                     *for* (mon_left, 
>>>> coeff_left) *in* left.monomial_coefficients().items()
>>>>
>>>> *    217*                                     *for* (mon_right, 
>>>> coeff_right) *in* right.monomial_coefficients().items() )
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/categories/semigroups.py:957, in 
>>>> Semigroups.Algebras.ParentMethods.product_on_basis(self, g1, g2)
>>>>
>>>> *    939* *def* product_on_basis(self, g1, g2):
>>>>
>>>> *    940*     r*"""*
>>>>
>>>> *    941* *    Product, on basis elements, as per*
>>>>
>>>> *    942* *    
>>>> :meth:`MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()*
>>>>
>>>>    (...)
>>>>
>>>> *    955* *        B['ab'] + B['bdc']*
>>>>
>>>> *    956* *    """*
>>>>
>>>> --> 957     *return* self.monomial(g1 * g2)
>>>>
>>>>
>>>> File 
>>>> ~/Applications/sage/src/sage/groups/perm_gps/permgroup_element.pyx:1295, 
>>>> in 
>>>> sage.groups.perm_gps.permgroup_element.PermutationGroupElement.__mul__()
>>>>
>>>> *   1293*             return prod
>>>>
>>>> *   1294* 
>>>>
>>>> -> 1295     return coercion_model.bin_op(left, right, operator.mul)
>>>>
>>>> *   1296* 
>>>>
>>>> *   1297* cpdef _mul_(left, _right):
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1200, in 
>>>> sage.structure.coerce.CoercionModel.bin_op()
>>>>
>>>> *   1198* # Now coerce to a common parent and do the operation there
>>>>
>>>> *   1199* try:
>>>>
>>>> -> 1200     xy = self.canonical_coercion(x, y)
>>>>
>>>> *   1201* except TypeError:
>>>>
>>>> *   1202*     self._record_exception()
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1332, in 
>>>> sage.structure.coerce.CoercionModel.canonical_coercion()
>>>>
>>>> *   1330*         if x_elt._parent is y_elt._parent:
>>>>
>>>> *   1331*             return x_elt,y_elt
>>>>
>>>> -> 1332     self._coercion_error(x, x_map, x_elt, y, y_map, y_elt)
>>>>
>>>> *   1333* 
>>>>
>>>> *   1334* cdef bint x_numeric = isinstance(x, (int, long, float, 
>>>> complex))
>>>>
>>>>
>>>> File ~/Applications/sage/src/sage/structure/coerce.pyx:2031, in 
>>>> sage.structure.coerce.CoercionModel._coercion_error()
>>>>
>>>> *   2029*             <class 'str'> 'g'
>>>>
>>>> *   2030*         """
>>>>
>>>> -> 2031         raise RuntimeError("""There is a bug in the coercion 
>>>> code in Sage.
>>>>
>>>> *   2032* Both x (=%r) and y (=%r) are supposed to have identical 
>>>> parents but they don't.
>>>>
>>>> *   2033* In fact, x has parent '%s'
>>>>
>>>>
>>>> RuntimeError: There is a bug in the coercion code in Sage.
>>>>
>>>> Both x (=()) and y (=(5,6,7)(12,14,18)) are supposed to have identical 
>>>> parents but they don't.
>>>>
>>>> In fact, x has parent 'Permutation Group with generators 
>>>> [(5,6,7)(12,14,18), (1,2)(3,4)]'
>>>>
>>>> whereas y has parent 'Permutation Group with generators 
>>>> [(5,6,7)(12,14,18), (1,2)(3,4)]'
>>>>
>>>> Original elements () (parent Permutation Group with generators 
>>>> [(5,6,7)(12,14,18), (1,2)(3,4)]) and (5,6,7)(12,14,18) (parent Permutation 
>>>> Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and maps
>>>>
>>>> <class 'NoneType'> None
>>>>
>>>> <class 'sage.structure.coerce_maps.DefaultConvertMap_unique'> (map 
>>>> internal to coercion system -- copy before use)
>>>>
>>>> Coercion map:
>>>>
>>>>   From: Permutation Group with generators [(5,6,7)(12,14,18), 
>>>> (1,2)(3,4)]
>>>>
>>>>   To:   Permutation Group with generators [(5,6,7)(12,14,18), 
>>>> (1,2)(3,4)]
>>>> On Friday, August 5, 2022 at 4:21:09 PM UTC-7 keirh...@gmail.com wrote:
>>>>
>>>>> The Sage version I was using is 9.6.
>>>>>
>>>>> On Friday, August 5, 2022 at 7:19:48 PM UTC-4 keirh...@gmail.com 
>>>>> wrote:
>>>>>
>>>>>> When I do this:
>>>>>>
>>>>>>
>>>>>>
>>>>>>
>>>>>>
>>>>>> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = 
>>>>>> H.algebra(GF(2))[a, b] = H.gens()x = kH(a) + kH(b) + kH.one(); 
>>>>>> print(x)x*x*
>>>>>>
>>>>>> I get an error caused by the last computation: "RuntimeError: There 
>>>>>> is a bug in the coercion code in Sage." (I was working in Cocalc, but 
>>>>>> you 
>>>>>> can cut and paste the code above into a SageMathCell and reproduce the 
>>>>>> error.)
>>>>>>
>>>>>> Is this really a bug, or should I be doing this differently? (I found 
>>>>>> the problem working with a larger group, but this simpler example above 
>>>>>> has 
>>>>>> the same issue.)
>>>>>>
>>>>>> Thanks --
>>>>>>
>>>>>> Keir
>>>>>>
>>>>> -- 
>>> You received this message because you are subscribed to a topic in the 
>>> Google Groups "sage-support" group.
>>> To unsubscribe from this topic, visit 
>>> https://groups.google.com/d/topic/sage-support/WVMuik1TICg/unsubscribe.
>>> To unsubscribe from this group and all its topics, send an email to 
>>> sage-support...@googlegroups.com.
>>> To view this discussion on the web visit 
>>> https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com
>>>  
>>> <https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com?utm_medium=email&utm_source=footer>
>>> .
>>>
>> -- 
>> Best,
>>
>> Trevor
>>
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/d5f88f55-1eb0-4cb5-ae85-fd8c633e954dn%40googlegroups.com.

Reply via email to