This code:
*H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = H.algebra(GF(2))[a, b] = H.gens()# Produces no coercion errorprint((kH(a) + kH(b) + H.one())^2)# Produces a coercion error in all cases belowtry: print((kH(a) + kH(b) + kH(kH.one()))^2)except: print("Fail 1") passtry: print((kH(a) + kH(b) + kH.one())^2)except: print("Fail 2") passtry: print((kH(a) + kH(b) + kH.group().one())^2)except: print("Fail 3") passtry: print((kH(a) + kH(b) + kH(kH.group().one()))^2)except: print("Fail 4") pass* produces the output: *(5,7,6)(12,18,14)* *Fail 1* *Fail 2* *Fail 3* *Fail 4* The thing that's irritating is that using H.one() in the sum is fine; using kH.group().one() is not. But I fully admit that I may just not understand what the right behavior should be. On Saturday, August 6, 2022 at 11:40:03 PM UTC-4 trevor...@gmail.com wrote: > Is the x you give in these examples the same x as above? I’m worried > (maybe needlessly) about if the x you give includes a summand of kH.one(). > If the x you give does not include a summand of one, then the behavior you > described is consistent with what I think the problem is. If the x in the > new example doesn’t have a summand of kH.one() then I’m misunderstanding > something. > > On Sat, Aug 6, 2022 at 6:00 PM keirh...@gmail.com <keirh...@gmail.com> > wrote: > >> Thanks for this workaround. I was passing the group algebra to a function >> and then accessing the base group like so: >> >> kH.group() >> >> Both of the following cause the coercion error: >> >> kH.one() * x >> kH.group().one() * x >> >> But this works fine: >> >> H.one()*x >> >> I will just have to pass the original group along as well. >> >> --Keir >> >> On Saturday, August 6, 2022 at 2:06:51 PM UTC-4 trevor...@gmail.com >> wrote: >> >>> I can reproduce this on 9.7.beta7. >>> >>> The problem is that the parent is not understood to be the same (even >>> though it clearly is). A workaround is: >>> >>> sage: x = kH(a) + kH(b) + kH(H.one()); x >>> >>> () + (5,6,7)(12,14,18) + (1,2)(3,4) >>> >>> sage: x*x >>> >>> (5,7,6)(12,18,14) >>> >>> >>> Here H.one() puts the one in the right parent for the coercion >>> framework, but this definitely looks like a bug to me, because >>> >>> sage: kH(a).parent() >>> >>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >>> (1,2)(3,4)] over Finite Field of size 2 >>> >>> sage: kH.one().parent() >>> >>> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >>> (1,2)(3,4)] over Finite Field of size 2 >>> >>> sage: kH(a).parent() is kH.one().parent() >>> >>> True >>> >>> >>> Reproducing the bug with messages on 9.7.beta7: >>> >>> sage: H = PermutationGroup([[(*1*,*2*), (*3*,*4*)], [(*5*,*6*,*7*),(*12* >>> ,*14*,*18*)]]) >>> >>> sage: kH = H.algebra(GF(*2*)) >>> >>> sage: H.gens() >>> >>> ((5,6,7)(12,14,18), (1,2)(3,4)) >>> >>> sage: a, b = H.gens() >>> >>> sage: x = kH(a) + kH(b) + kH.one(); x >>> >>> (5,6,7)(12,14,18) + (1,2)(3,4) + () >>> >>> sage: x*x >>> >>> >>> --------------------------------------------------------------------------- >>> >>> RuntimeError Traceback (most recent call >>> last) >>> >>> Input In [7], in <cell line: 1>() >>> >>> ----> 1 x*x >>> >>> >>> File ~/Applications/sage/src/sage/structure/element.pyx:1514, in >>> sage.structure.element.Element.__mul__() >>> >>> * 1512* cdef int cl = classify_elements(left, right) >>> >>> * 1513* if HAVE_SAME_PARENT(cl): >>> >>> -> 1514 return (<Element>left)._mul_(right) >>> >>> * 1515* if BOTH_ARE_ELEMENT(cl): >>> >>> * 1516* return coercion_model.bin_op(left, right, mul) >>> >>> >>> File ~/Applications/sage/src/sage/structure/element.pyx:1560, in >>> sage.structure.element.Element._mul_() >>> >>> * 1558* raise bin_op_exception('*', self, other) >>> >>> * 1559* else: >>> >>> -> 1560 return python_op(other) >>> >>> * 1561* >>> >>> * 1562* cdef _mul_long(self, long n): >>> >>> >>> File ~/Applications/sage/src/sage/categories/coercion_methods.pyx:53, in >>> sage.categories.coercion_methods._mul_parent() >>> >>> * 51* True >>> >>> * 52* """ >>> >>> ---> 53 return (<Element>self)._parent.product(self, other) >>> >>> >>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, >>> in >>> MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply(self, >>> >>> left, right) >>> >>> * 201* *def* _product_from_product_on_basis_multiply( self, left, >>> right ): >>> >>> * 202* r*"""* >>> >>> * 203* * Compute the product of two elements by extending* >>> >>> * 204* * bilinearly the method :meth:`product_on_basis`.* >>> >>> (...) >>> >>> * 213* >>> >>> * 214* * """* >>> >>> --> 215 *return* >>> self.linear_combination((self.product_on_basis(mon_left, mon_right), >>> coeff_left * coeff_right ) >>> >>> * 216* *for* (mon_left, >>> coeff_left) *in* left.monomial_coefficients().items() >>> >>> * 217* *for* (mon_right, >>> coeff_right) *in* right.monomial_coefficients().items() ) >>> >>> >>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >>> CombinatorialFreeModule.linear_combination(self, iter_of_elements_coeff, >>> factor_on_left) >>> >>> * 945* *def* linear_combination(self, iter_of_elements_coeff, >>> factor_on_left=*True*): >>> >>> * 946* r*"""* >>> >>> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >>> >>> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >>> \lambda_1 +* >>> >>> (...) >>> >>> * 967* * 20*B[1] + 20*B[2]* >>> >>> * 968* * """* >>> >>> --> 969 *return* >>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >>> coeff) >>> >>> * 970* *for* >>> element, coeff *in* iter_of_elements_coeff), >>> >>> * 971* >>> factor_on_left=factor_on_left), >>> >>> * 972* remove_zeros=*False*) >>> >>> >>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:313, in >>> sage.data_structures.blas_dict.linear_combination() >>> >>> * 311* return remove_zeros(result) >>> >>> * 312* >>> >>> --> 313 cpdef dict linear_combination(dict_factor_iter, bint >>> factor_on_left=True): >>> >>> * 314* r""" >>> >>> * 315* Return the pointwise addition of dictionaries with >>> coefficients. >>> >>> >>> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:348, in >>> sage.data_structures.blas_dict.linear_combination() >>> >>> * 346* cdef dict D >>> >>> * 347* >>> >>> --> 348 for D, a in dict_factor_iter: >>> >>> * 349* if not a: # We multiply by 0, so nothing to do >>> >>> * 350* continue >>> >>> >>> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >>> <genexpr>(.0) >>> >>> * 945* *def* linear_combination(self, iter_of_elements_coeff, >>> factor_on_left=*True*): >>> >>> * 946* r*"""* >>> >>> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >>> >>> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >>> \lambda_1 +* >>> >>> (...) >>> >>> * 967* * 20*B[1] + 20*B[2]* >>> >>> * 968* * """* >>> >>> --> 969 *return* >>> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >>> coeff) >>> >>> * 970* *for* >>> element, coeff *in* iter_of_elements_coeff), >>> >>> * 971* >>> factor_on_left=factor_on_left), >>> >>> * 972* remove_zeros=*False*) >>> >>> >>> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, >>> in <genexpr>(.0) >>> >>> * 201* *def* _product_from_product_on_basis_multiply( self, left, >>> right ): >>> >>> * 202* r*"""* >>> >>> * 203* * Compute the product of two elements by extending* >>> >>> * 204* * bilinearly the method :meth:`product_on_basis`.* >>> >>> (...) >>> >>> * 213* >>> >>> * 214* * """* >>> >>> --> 215 *return* >>> self.linear_combination((self.product_on_basis(mon_left, mon_right), >>> coeff_left * coeff_right ) >>> >>> * 216* *for* (mon_left, >>> coeff_left) *in* left.monomial_coefficients().items() >>> >>> * 217* *for* (mon_right, >>> coeff_right) *in* right.monomial_coefficients().items() ) >>> >>> >>> File ~/Applications/sage/src/sage/categories/semigroups.py:957, in >>> Semigroups.Algebras.ParentMethods.product_on_basis(self, g1, g2) >>> >>> * 939* *def* product_on_basis(self, g1, g2): >>> >>> * 940* r*"""* >>> >>> * 941* * Product, on basis elements, as per* >>> >>> * 942* * >>> :meth:`MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()* >>> >>> (...) >>> >>> * 955* * B['ab'] + B['bdc']* >>> >>> * 956* * """* >>> >>> --> 957 *return* self.monomial(g1 * g2) >>> >>> >>> File >>> ~/Applications/sage/src/sage/groups/perm_gps/permgroup_element.pyx:1295, in >>> sage.groups.perm_gps.permgroup_element.PermutationGroupElement.__mul__() >>> >>> * 1293* return prod >>> >>> * 1294* >>> >>> -> 1295 return coercion_model.bin_op(left, right, operator.mul) >>> >>> * 1296* >>> >>> * 1297* cpdef _mul_(left, _right): >>> >>> >>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1200, in >>> sage.structure.coerce.CoercionModel.bin_op() >>> >>> * 1198* # Now coerce to a common parent and do the operation there >>> >>> * 1199* try: >>> >>> -> 1200 xy = self.canonical_coercion(x, y) >>> >>> * 1201* except TypeError: >>> >>> * 1202* self._record_exception() >>> >>> >>> File ~/Applications/sage/src/sage/structure/coerce.pyx:1332, in >>> sage.structure.coerce.CoercionModel.canonical_coercion() >>> >>> * 1330* if x_elt._parent is y_elt._parent: >>> >>> * 1331* return x_elt,y_elt >>> >>> -> 1332 self._coercion_error(x, x_map, x_elt, y, y_map, y_elt) >>> >>> * 1333* >>> >>> * 1334* cdef bint x_numeric = isinstance(x, (int, long, float, >>> complex)) >>> >>> >>> File ~/Applications/sage/src/sage/structure/coerce.pyx:2031, in >>> sage.structure.coerce.CoercionModel._coercion_error() >>> >>> * 2029* <class 'str'> 'g' >>> >>> * 2030* """ >>> >>> -> 2031 raise RuntimeError("""There is a bug in the coercion >>> code in Sage. >>> >>> * 2032* Both x (=%r) and y (=%r) are supposed to have identical >>> parents but they don't. >>> >>> * 2033* In fact, x has parent '%s' >>> >>> >>> RuntimeError: There is a bug in the coercion code in Sage. >>> >>> Both x (=()) and y (=(5,6,7)(12,14,18)) are supposed to have identical >>> parents but they don't. >>> >>> In fact, x has parent 'Permutation Group with generators >>> [(5,6,7)(12,14,18), (1,2)(3,4)]' >>> >>> whereas y has parent 'Permutation Group with generators >>> [(5,6,7)(12,14,18), (1,2)(3,4)]' >>> >>> Original elements () (parent Permutation Group with generators >>> [(5,6,7)(12,14,18), (1,2)(3,4)]) and (5,6,7)(12,14,18) (parent Permutation >>> Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and maps >>> >>> <class 'NoneType'> None >>> >>> <class 'sage.structure.coerce_maps.DefaultConvertMap_unique'> (map >>> internal to coercion system -- copy before use) >>> >>> Coercion map: >>> >>> From: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] >>> >>> To: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] >>> On Friday, August 5, 2022 at 4:21:09 PM UTC-7 keirh...@gmail.com wrote: >>> >>>> The Sage version I was using is 9.6. >>>> >>>> On Friday, August 5, 2022 at 7:19:48 PM UTC-4 keirh...@gmail.com wrote: >>>> >>>>> When I do this: >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = >>>>> H.algebra(GF(2))[a, b] = H.gens()x = kH(a) + kH(b) + kH.one(); >>>>> print(x)x*x* >>>>> >>>>> I get an error caused by the last computation: "RuntimeError: There is >>>>> a bug in the coercion code in Sage." (I was working in Cocalc, but you >>>>> can >>>>> cut and paste the code above into a SageMathCell and reproduce the error.) >>>>> >>>>> Is this really a bug, or should I be doing this differently? (I found >>>>> the problem working with a larger group, but this simpler example above >>>>> has >>>>> the same issue.) >>>>> >>>>> Thanks -- >>>>> >>>>> Keir >>>>> >>>> -- >> You received this message because you are subscribed to a topic in the >> Google Groups "sage-support" group. >> To unsubscribe from this topic, visit >> https://groups.google.com/d/topic/sage-support/WVMuik1TICg/unsubscribe. >> To unsubscribe from this group and all its topics, send an email to >> sage-support...@googlegroups.com. >> To view this discussion on the web visit >> https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com >> >> <https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com?utm_medium=email&utm_source=footer> >> . >> > -- > Best, > > Trevor > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/780e2cc2-7126-4f78-850d-cffb7e555470n%40googlegroups.com.