Is the x you give in these examples the same x as above? I’m worried (maybe needlessly) about if the x you give includes a summand of kH.one(). If the x you give does not include a summand of one, then the behavior you described is consistent with what I think the problem is. If the x in the new example doesn’t have a summand of kH.one() then I’m misunderstanding something.
On Sat, Aug 6, 2022 at 6:00 PM keirh...@gmail.com <keirhar...@gmail.com> wrote: > Thanks for this workaround. I was passing the group algebra to a function > and then accessing the base group like so: > > kH.group() > > Both of the following cause the coercion error: > > kH.one() * x > kH.group().one() * x > > But this works fine: > > H.one()*x > > I will just have to pass the original group along as well. > > --Keir > > On Saturday, August 6, 2022 at 2:06:51 PM UTC-4 trevor...@gmail.com wrote: > >> I can reproduce this on 9.7.beta7. >> >> The problem is that the parent is not understood to be the same (even >> though it clearly is). A workaround is: >> >> sage: x = kH(a) + kH(b) + kH(H.one()); x >> >> () + (5,6,7)(12,14,18) + (1,2)(3,4) >> >> sage: x*x >> >> (5,7,6)(12,18,14) >> >> >> Here H.one() puts the one in the right parent for the coercion framework, >> but this definitely looks like a bug to me, because >> >> sage: kH(a).parent() >> >> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >> (1,2)(3,4)] over Finite Field of size 2 >> >> sage: kH.one().parent() >> >> Algebra of Permutation Group with generators [(5,6,7)(12,14,18), >> (1,2)(3,4)] over Finite Field of size 2 >> >> sage: kH(a).parent() is kH.one().parent() >> >> True >> >> >> Reproducing the bug with messages on 9.7.beta7: >> >> sage: H = PermutationGroup([[(*1*,*2*), (*3*,*4*)], [(*5*,*6*,*7*),(*12*, >> *14*,*18*)]]) >> >> sage: kH = H.algebra(GF(*2*)) >> >> sage: H.gens() >> >> ((5,6,7)(12,14,18), (1,2)(3,4)) >> >> sage: a, b = H.gens() >> >> sage: x = kH(a) + kH(b) + kH.one(); x >> >> (5,6,7)(12,14,18) + (1,2)(3,4) + () >> >> sage: x*x >> >> >> --------------------------------------------------------------------------- >> >> RuntimeError Traceback (most recent call >> last) >> >> Input In [7], in <cell line: 1>() >> >> ----> 1 x*x >> >> >> File ~/Applications/sage/src/sage/structure/element.pyx:1514, in >> sage.structure.element.Element.__mul__() >> >> * 1512* cdef int cl = classify_elements(left, right) >> >> * 1513* if HAVE_SAME_PARENT(cl): >> >> -> 1514 return (<Element>left)._mul_(right) >> >> * 1515* if BOTH_ARE_ELEMENT(cl): >> >> * 1516* return coercion_model.bin_op(left, right, mul) >> >> >> File ~/Applications/sage/src/sage/structure/element.pyx:1560, in >> sage.structure.element.Element._mul_() >> >> * 1558* raise bin_op_exception('*', self, other) >> >> * 1559* else: >> >> -> 1560 return python_op(other) >> >> * 1561* >> >> * 1562* cdef _mul_long(self, long n): >> >> >> File ~/Applications/sage/src/sage/categories/coercion_methods.pyx:53, in >> sage.categories.coercion_methods._mul_parent() >> >> * 51* True >> >> * 52* """ >> >> ---> 53 return (<Element>self)._parent.product(self, other) >> >> >> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, in >> MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply(self, >> left, right) >> >> * 201* *def* _product_from_product_on_basis_multiply( self, left, >> right ): >> >> * 202* r*"""* >> >> * 203* * Compute the product of two elements by extending* >> >> * 204* * bilinearly the method :meth:`product_on_basis`.* >> >> (...) >> >> * 213* >> >> * 214* * """* >> >> --> 215 *return* >> self.linear_combination((self.product_on_basis(mon_left, mon_right), >> coeff_left * coeff_right ) >> >> * 216* *for* (mon_left, >> coeff_left) *in* left.monomial_coefficients().items() >> >> * 217* *for* (mon_right, >> coeff_right) *in* right.monomial_coefficients().items() ) >> >> >> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >> CombinatorialFreeModule.linear_combination(self, iter_of_elements_coeff, >> factor_on_left) >> >> * 945* *def* linear_combination(self, iter_of_elements_coeff, >> factor_on_left=*True*): >> >> * 946* r*"""* >> >> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >> >> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >> \lambda_1 +* >> >> (...) >> >> * 967* * 20*B[1] + 20*B[2]* >> >> * 968* * """* >> >> --> 969 *return* >> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >> coeff) >> >> * 970* *for* >> element, coeff *in* iter_of_elements_coeff), >> >> * 971* >> factor_on_left=factor_on_left), >> >> * 972* remove_zeros=*False*) >> >> >> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:313, in >> sage.data_structures.blas_dict.linear_combination() >> >> * 311* return remove_zeros(result) >> >> * 312* >> >> --> 313 cpdef dict linear_combination(dict_factor_iter, bint >> factor_on_left=True): >> >> * 314* r""" >> >> * 315* Return the pointwise addition of dictionaries with >> coefficients. >> >> >> File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:348, in >> sage.data_structures.blas_dict.linear_combination() >> >> * 346* cdef dict D >> >> * 347* >> >> --> 348 for D, a in dict_factor_iter: >> >> * 349* if not a: # We multiply by 0, so nothing to do >> >> * 350* continue >> >> >> File ~/Applications/sage/src/sage/combinat/free_module.py:969, in >> <genexpr>(.0) >> >> * 945* *def* linear_combination(self, iter_of_elements_coeff, >> factor_on_left=*True*): >> >> * 946* r*"""* >> >> * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* >> >> * 948* * \lambda_k v_k` (resp. the linear combination `v_1 >> \lambda_1 +* >> >> (...) >> >> * 967* * 20*B[1] + 20*B[2]* >> >> * 968* * """* >> >> --> 969 *return* >> self._from_dict(blas.linear_combination(((element._monomial_coefficients, >> coeff) >> >> * 970* *for* >> element, coeff *in* iter_of_elements_coeff), >> >> * 971* >> factor_on_left=factor_on_left), >> >> * 972* remove_zeros=*False*) >> >> >> File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, in >> <genexpr>(.0) >> >> * 201* *def* _product_from_product_on_basis_multiply( self, left, >> right ): >> >> * 202* r*"""* >> >> * 203* * Compute the product of two elements by extending* >> >> * 204* * bilinearly the method :meth:`product_on_basis`.* >> >> (...) >> >> * 213* >> >> * 214* * """* >> >> --> 215 *return* >> self.linear_combination((self.product_on_basis(mon_left, mon_right), >> coeff_left * coeff_right ) >> >> * 216* *for* (mon_left, >> coeff_left) *in* left.monomial_coefficients().items() >> >> * 217* *for* (mon_right, >> coeff_right) *in* right.monomial_coefficients().items() ) >> >> >> File ~/Applications/sage/src/sage/categories/semigroups.py:957, in >> Semigroups.Algebras.ParentMethods.product_on_basis(self, g1, g2) >> >> * 939* *def* product_on_basis(self, g1, g2): >> >> * 940* r*"""* >> >> * 941* * Product, on basis elements, as per* >> >> * 942* * >> :meth:`MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()* >> >> (...) >> >> * 955* * B['ab'] + B['bdc']* >> >> * 956* * """* >> >> --> 957 *return* self.monomial(g1 * g2) >> >> >> File >> ~/Applications/sage/src/sage/groups/perm_gps/permgroup_element.pyx:1295, in >> sage.groups.perm_gps.permgroup_element.PermutationGroupElement.__mul__() >> >> * 1293* return prod >> >> * 1294* >> >> -> 1295 return coercion_model.bin_op(left, right, operator.mul) >> >> * 1296* >> >> * 1297* cpdef _mul_(left, _right): >> >> >> File ~/Applications/sage/src/sage/structure/coerce.pyx:1200, in >> sage.structure.coerce.CoercionModel.bin_op() >> >> * 1198* # Now coerce to a common parent and do the operation there >> >> * 1199* try: >> >> -> 1200 xy = self.canonical_coercion(x, y) >> >> * 1201* except TypeError: >> >> * 1202* self._record_exception() >> >> >> File ~/Applications/sage/src/sage/structure/coerce.pyx:1332, in >> sage.structure.coerce.CoercionModel.canonical_coercion() >> >> * 1330* if x_elt._parent is y_elt._parent: >> >> * 1331* return x_elt,y_elt >> >> -> 1332 self._coercion_error(x, x_map, x_elt, y, y_map, y_elt) >> >> * 1333* >> >> * 1334* cdef bint x_numeric = isinstance(x, (int, long, float, >> complex)) >> >> >> File ~/Applications/sage/src/sage/structure/coerce.pyx:2031, in >> sage.structure.coerce.CoercionModel._coercion_error() >> >> * 2029* <class 'str'> 'g' >> >> * 2030* """ >> >> -> 2031 raise RuntimeError("""There is a bug in the coercion code >> in Sage. >> >> * 2032* Both x (=%r) and y (=%r) are supposed to have identical >> parents but they don't. >> >> * 2033* In fact, x has parent '%s' >> >> >> RuntimeError: There is a bug in the coercion code in Sage. >> >> Both x (=()) and y (=(5,6,7)(12,14,18)) are supposed to have identical >> parents but they don't. >> >> In fact, x has parent 'Permutation Group with generators >> [(5,6,7)(12,14,18), (1,2)(3,4)]' >> >> whereas y has parent 'Permutation Group with generators >> [(5,6,7)(12,14,18), (1,2)(3,4)]' >> >> Original elements () (parent Permutation Group with generators >> [(5,6,7)(12,14,18), (1,2)(3,4)]) and (5,6,7)(12,14,18) (parent Permutation >> Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and maps >> >> <class 'NoneType'> None >> >> <class 'sage.structure.coerce_maps.DefaultConvertMap_unique'> (map >> internal to coercion system -- copy before use) >> >> Coercion map: >> >> From: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] >> >> To: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] >> On Friday, August 5, 2022 at 4:21:09 PM UTC-7 keirh...@gmail.com wrote: >> >>> The Sage version I was using is 9.6. >>> >>> On Friday, August 5, 2022 at 7:19:48 PM UTC-4 keirh...@gmail.com wrote: >>> >>>> When I do this: >>>> >>>> >>>> >>>> >>>> >>>> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = >>>> H.algebra(GF(2))[a, b] = H.gens()x = kH(a) + kH(b) + kH.one(); print(x)x*x* >>>> >>>> I get an error caused by the last computation: "RuntimeError: There is >>>> a bug in the coercion code in Sage." (I was working in Cocalc, but you can >>>> cut and paste the code above into a SageMathCell and reproduce the error.) >>>> >>>> Is this really a bug, or should I be doing this differently? (I found >>>> the problem working with a larger group, but this simpler example above has >>>> the same issue.) >>>> >>>> Thanks -- >>>> >>>> Keir >>>> >>> -- > You received this message because you are subscribed to a topic in the > Google Groups "sage-support" group. > To unsubscribe from this topic, visit > https://groups.google.com/d/topic/sage-support/WVMuik1TICg/unsubscribe. > To unsubscribe from this group and all its topics, send an email to > sage-support+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com > <https://groups.google.com/d/msgid/sage-support/d7fbbb32-5ea3-45d8-8ca6-6c5da0088bban%40googlegroups.com?utm_medium=email&utm_source=footer> > . > -- Best, Trevor -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/CAJ6VCMBWApOU%2BWFGh2dL8GWnOtApTw%3D2Wpa57kbRDiqTU2OOww%40mail.gmail.com.