I can reproduce this on 9.7.beta7. The problem is that the parent is not understood to be the same (even though it clearly is). A workaround is:
sage: x = kH(a) + kH(b) + kH(H.one()); x () + (5,6,7)(12,14,18) + (1,2)(3,4) sage: x*x (5,7,6)(12,18,14) Here H.one() puts the one in the right parent for the coercion framework, but this definitely looks like a bug to me, because sage: kH(a).parent() Algebra of Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] over Finite Field of size 2 sage: kH.one().parent() Algebra of Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] over Finite Field of size 2 sage: kH(a).parent() is kH.one().parent() True Reproducing the bug with messages on 9.7.beta7: sage: H = PermutationGroup([[(*1*,*2*), (*3*,*4*)], [(*5*,*6*,*7*),(*12*, *14*,*18*)]]) sage: kH = H.algebra(GF(*2*)) sage: H.gens() ((5,6,7)(12,14,18), (1,2)(3,4)) sage: a, b = H.gens() sage: x = kH(a) + kH(b) + kH.one(); x (5,6,7)(12,14,18) + (1,2)(3,4) + () sage: x*x --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Input In [7], in <cell line: 1>() ----> 1 x*x File ~/Applications/sage/src/sage/structure/element.pyx:1514, in sage.structure.element.Element.__mul__() * 1512* cdef int cl = classify_elements(left, right) * 1513* if HAVE_SAME_PARENT(cl): -> 1514 return (<Element>left)._mul_(right) * 1515* if BOTH_ARE_ELEMENT(cl): * 1516* return coercion_model.bin_op(left, right, mul) File ~/Applications/sage/src/sage/structure/element.pyx:1560, in sage.structure.element.Element._mul_() * 1558* raise bin_op_exception('*', self, other) * 1559* else: -> 1560 return python_op(other) * 1561* * 1562* cdef _mul_long(self, long n): File ~/Applications/sage/src/sage/categories/coercion_methods.pyx:53, in sage.categories.coercion_methods._mul_parent() * 51* True * 52* """ ---> 53 return (<Element>self)._parent.product(self, other) File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, in MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply(self, left, right) * 201* *def* _product_from_product_on_basis_multiply( self, left, right ): * 202* r*"""* * 203* * Compute the product of two elements by extending* * 204* * bilinearly the method :meth:`product_on_basis`.* (...) * 213* * 214* * """* --> 215 *return* self.linear_combination((self.product_on_basis(mon_left, mon_right), coeff_left * coeff_right ) * 216* *for* (mon_left, coeff_left) *in* left.monomial_coefficients().items() * 217* *for* (mon_right, coeff_right) *in* right.monomial_coefficients().items() ) File ~/Applications/sage/src/sage/combinat/free_module.py:969, in CombinatorialFreeModule.linear_combination(self, iter_of_elements_coeff, factor_on_left) * 945* *def* linear_combination(self, iter_of_elements_coeff, factor_on_left=*True*): * 946* r*"""* * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* * 948* * \lambda_k v_k` (resp. the linear combination `v_1 \lambda_1 +* (...) * 967* * 20*B[1] + 20*B[2]* * 968* * """* --> 969 *return* self._from_dict(blas.linear_combination(((element._monomial_coefficients, coeff) * 970* *for* element, coeff *in* iter_of_elements_coeff), * 971* factor_on_left=factor_on_left), * 972* remove_zeros=*False*) File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:313, in sage.data_structures.blas_dict.linear_combination() * 311* return remove_zeros(result) * 312* --> 313 cpdef dict linear_combination(dict_factor_iter, bint factor_on_left=True): * 314* r""" * 315* Return the pointwise addition of dictionaries with coefficients. File ~/Applications/sage/src/sage/data_structures/blas_dict.pyx:348, in sage.data_structures.blas_dict.linear_combination() * 346* cdef dict D * 347* --> 348 for D, a in dict_factor_iter: * 349* if not a: # We multiply by 0, so nothing to do * 350* continue File ~/Applications/sage/src/sage/combinat/free_module.py:969, in <genexpr>(.0) * 945* *def* linear_combination(self, iter_of_elements_coeff, factor_on_left=*True*): * 946* r*"""* * 947* * Return the linear combination `\lambda_1 v_1 + \cdots +* * 948* * \lambda_k v_k` (resp. the linear combination `v_1 \lambda_1 +* (...) * 967* * 20*B[1] + 20*B[2]* * 968* * """* --> 969 *return* self._from_dict(blas.linear_combination(((element._monomial_coefficients, coeff) * 970* *for* element, coeff *in* iter_of_elements_coeff), * 971* factor_on_left=factor_on_left), * 972* remove_zeros=*False*) File ~/Applications/sage/src/sage/categories/magmatic_algebras.py:215, in <genexpr>(.0) * 201* *def* _product_from_product_on_basis_multiply( self, left, right ): * 202* r*"""* * 203* * Compute the product of two elements by extending* * 204* * bilinearly the method :meth:`product_on_basis`.* (...) * 213* * 214* * """* --> 215 *return* self.linear_combination((self.product_on_basis(mon_left, mon_right), coeff_left * coeff_right ) * 216* *for* (mon_left, coeff_left) *in* left.monomial_coefficients().items() * 217* *for* (mon_right, coeff_right) *in* right.monomial_coefficients().items() ) File ~/Applications/sage/src/sage/categories/semigroups.py:957, in Semigroups.Algebras.ParentMethods.product_on_basis(self, g1, g2) * 939* *def* product_on_basis(self, g1, g2): * 940* r*"""* * 941* * Product, on basis elements, as per* * 942* * :meth:`MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()* (...) * 955* * B['ab'] + B['bdc']* * 956* * """* --> 957 *return* self.monomial(g1 * g2) File ~/Applications/sage/src/sage/groups/perm_gps/permgroup_element.pyx:1295, in sage.groups.perm_gps.permgroup_element.PermutationGroupElement.__mul__() * 1293* return prod * 1294* -> 1295 return coercion_model.bin_op(left, right, operator.mul) * 1296* * 1297* cpdef _mul_(left, _right): File ~/Applications/sage/src/sage/structure/coerce.pyx:1200, in sage.structure.coerce.CoercionModel.bin_op() * 1198* # Now coerce to a common parent and do the operation there * 1199* try: -> 1200 xy = self.canonical_coercion(x, y) * 1201* except TypeError: * 1202* self._record_exception() File ~/Applications/sage/src/sage/structure/coerce.pyx:1332, in sage.structure.coerce.CoercionModel.canonical_coercion() * 1330* if x_elt._parent is y_elt._parent: * 1331* return x_elt,y_elt -> 1332 self._coercion_error(x, x_map, x_elt, y, y_map, y_elt) * 1333* * 1334* cdef bint x_numeric = isinstance(x, (int, long, float, complex)) File ~/Applications/sage/src/sage/structure/coerce.pyx:2031, in sage.structure.coerce.CoercionModel._coercion_error() * 2029* <class 'str'> 'g' * 2030* """ -> 2031 raise RuntimeError("""There is a bug in the coercion code in Sage. * 2032* Both x (=%r) and y (=%r) are supposed to have identical parents but they don't. * 2033* In fact, x has parent '%s' RuntimeError: There is a bug in the coercion code in Sage. Both x (=()) and y (=(5,6,7)(12,14,18)) are supposed to have identical parents but they don't. In fact, x has parent 'Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]' whereas y has parent 'Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]' Original elements () (parent Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and (5,6,7)(12,14,18) (parent Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)]) and maps <class 'NoneType'> None <class 'sage.structure.coerce_maps.DefaultConvertMap_unique'> (map internal to coercion system -- copy before use) Coercion map: From: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] To: Permutation Group with generators [(5,6,7)(12,14,18), (1,2)(3,4)] On Friday, August 5, 2022 at 4:21:09 PM UTC-7 keirh...@gmail.com wrote: > The Sage version I was using is 9.6. > > On Friday, August 5, 2022 at 7:19:48 PM UTC-4 keirh...@gmail.com wrote: > >> When I do this: >> >> >> >> >> >> *H = PermutationGroup([ [(1,2), (3,4)], [(5,6,7),(12,14,18)] ])kH = >> H.algebra(GF(2))[a, b] = H.gens()x = kH(a) + kH(b) + kH.one(); print(x)x*x* >> >> I get an error caused by the last computation: "RuntimeError: There is a >> bug in the coercion code in Sage." (I was working in Cocalc, but you can >> cut and paste the code above into a SageMathCell and reproduce the error.) >> >> Is this really a bug, or should I be doing this differently? (I found the >> problem working with a larger group, but this simpler example above has the >> same issue.) >> >> Thanks -- >> >> Keir >> > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/6dfeb89c-27e4-400a-b244-1d523ab53c49n%40googlegroups.com.