---------- Forwarded message ---------- From: Christian Szegedy <christian.szeg...@gmail.com> Date: Thu, Dec 17, 2009 at 12:26 AM Subject: sage bug report To: William Stein <wst...@gmail.com>
Simple 8X8 matrix determinant computation makes sage hang: load x.py test() On the other hand if m.det() is replaced m.inverse(), it runs through in no time. The determinant of the matrix is a sum of two monomials: x1*x4*x5*x6 + x0*x2*x3*x7, but even the most primitive implementation (summing all 8! permutations,most of them zero) should run through in much less than minute. -- William Stein Associate Professor of Mathematics University of Washington http://wstein.org -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org
def genVar(i): return "x%i"%i def matrix_from_hash(h): R=FractionField(PolynomialRing(GF(2),",".join(map(genVar,range(0,10))))) h2 = {} for p in h: x=R.zero_element() for v in h[p]: x=x+R.gens()[v] h2[p] = x h2[p[1],p[0]] = x return matrix(h2,sparse=False) def test(): m = matrix_from_hash({(0, 1): [0, 5], (1, 2): [0], (5, 6): [2], (6, 7): [1], (4, 5): [4], (0, 7): [1, 7], (0, 6): [2, 1], (0, 5): [4, 2], (0, 4): [3, 4], (2, 3): [6], (0, 3): [6, 3], (3, 4): [3], (0, 2): [0, 6]}) print m print(m.inverse())