Jari-Pekka Ikonen wrote:
> Hello,
> 
> 
> 
> I wrote in Sage:
> 
> 
> 
> maxima.clear('x'); maxima.clear('fnth')
> 
> 
> 
> maxima.de_solve_Laplace("diff(fnth(x),x,60) = fnth(x)", ["x","fnth"], [0,1,5
> 2,3,65,8,9,5,43,2,4,5,6,5,3,2,4,6,76,8,7,56,4,3,3,4,5,6,8,9,7,5,4,3,4,5,6,7
> 9,7,5,4,4,3,4,5,6,7,7,6,5,4,3,5,6,6,5,5,4,4])
> 
> 


Sorry; I don't know that much about maxima's differential equation 
solving abilities, but I just did exactly what you typed above, but did 
not see anything about the g* variables you mention below.  This is 
probably because I don't know how to ask maxima for the result. How do 
you do that?  The return text I got was just a restatement of my command 
(de_solve_Laplace(...))


----------------------------------------------------------------------
| Sage Version 4.2.1, Release Date: 2009-11-14                       |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
sage: maxima.clear('x'); maxima.clear('fnth')
sage: maxima.de_solve_Laplace("diff(fnth(x),x,60) = fnth(x)", ["x","fnth"],
....: [0,1,52,3,65,8,9,5,43,2,4,5,6,5,3,2,4,6,76,8,7,56,4,3,3,4,5,6,8,9,7,
....: 5,4,3,4,5,6,79,7,5,4,4,3,4,5,6,7,7,6,5,4,3,5,6,6,5,5,4,4])
de_solve_Laplace('diff(fnth(x),x,60)=fnth(x),[x,fnth],[0,1,52,3,65,8,9,5,43,2,4,5,6,5,3,2,4,6,76,8,7,56,4,3,3,4,5,6,8,9,7,5,4,3,4,5,6,79,7,5,4,4,3,4,5,6,7,7,6,5,4,3,5,6,6,5,5,4,4])
sage:



> 
> and got:
> 
> 
> 
> fnth(x)='ilt((185*?g454^15-198*?g454^14+264*?g454^13-88*?g454^12+533*?g4\
> 
> 54^11+168*?g454^10+29*?g454^9+169*?g454^8+67*?g454^7-154*?g454^6-11*?g45\
> 
> 4^5+112*?g454^4+118*?g454^3+223*?g454^2+49*?g454+118)/(30*(?g454^16+?g45\
> 
> 4^14-?g454^10-?g454^8-?g454^6+?g454^2+1)),?g454,x)+'ilt((40*?g454^7-137*\
> 
> ?g454^6-194*?g454^5-607*?g454^4+124*?g454^3+678*?g454^2+296*?g454-312)/(\
> 
> 60*(?g454^8+?g454^7-?g454^5-?g454^4-?g454^3+?g454+1)),?g454,x)+'ilt(-(20\
> 
> 2*?g454^7+29*?g454^6-314*?g454^5-73*?g454^4-292*?g454^3+394*?g454^2-294*\
> 
> ?g454-212)/(60*(?g454^8-?g454^7+?g454^5-?g454^4+?g454^3-?g454+1)),?g454,\
> 
> x)+'ilt(-(38*?g454^7-198*?g454^6-46*?g454^5+161*?g454^4-226*?g454^3-124*\
> 
> ?g454^2+178*?g454+67)/(30*(?g454^8-?g454^6+?g454^4-?g454^2+1)),?g454,x)+\
> 
> 'ilt(-(227*?g454^3+179*?g454^2+406*?g454+83)/(60*(?g454^4+?g454^3+?g454^\
> 
> 2+?g454+1)),?g454,x)+'ilt(-(121*?g454^3-457*?g454^2+638*?g454-129)/(60*(\
> 
> ?g454^4-?g454^3+?g454^2-?g454+1)),?g454,x)+'ilt(-(260*?g454^3+57*?g454^2\
> 
> -166*?g454+33)/(30*(?g454^4-?g454^2+1)),?g454,x)+%e^-(x/2)*(3^(3/2)*sin(\
> 
> sqrt(3)*x/2)/10+11*cos(sqrt(3)*x/2)/5)+%e^(x/2)*(-11*sin(sqrt(3)*x/2)/(1\
> 
> 0*sqrt(3))-cos(sqrt(3)*x/2)/3)+19*sin(x)/10+23*cos(x)/30+87*%e^x/10+29*%\
> 
> e^-x/15
> 

Thanks,

Jason


-- 
Jason Grout

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to