This was on a freshly compiled Sage 4.2. I did not do anything else in this session.
On Nov 25, 1:03 pm, Florent Hivert <florent.hiv...@univ-rouen.fr> wrote: > On Wed, Nov 25, 2009 at 03:20:38AM -0800, Michel wrote: > > ---------------------------------------------------------------------- > > | Sage Version 4.2, Release Date: 2009-10-24 | > > | Type notebook() for the GUI, and license() for information. | > > ---------------------------------------------------------------------- > > sage: var("t a b c d e f") > > (t, a, b, c, d, e, f) > > sage: M=matrix(4,4,[[1-t,-a*t,-e*t,d*t],[a,1-t,-b,-f],[e,b*t,1-t,-c], > > [-d,f*t,c*t,1-t]]) > > sage: M.determinant() > > -(((t - 1)*e + c*d)*b + (c*t*e - (t - 1)*d)*f - (c^2*t + (A0123456789 > > + t - 1)^2)*a)*a*t - ((t - 1)*(c*t*e - (t - 1)*d) - (b*d*t + f*t*e)*b > > + (b*c*t^2 + (t - 1)*f*t)*a)*d*t + ((t - 1)*((t - 1)*e + c*d) + (b*d*t > > + f*t*e)*f + ((t - 1)*b*t - c*f*t)*a)*t*e + (t - 1)*((t - 1)*(c^2*t + > > (A0123456789 + t - 1)^2) + ((t - 1)*b*t - c*f*t)*b + (b*c*t^2 + (t - 1) > > *f*t)*f) > > sage: expand(_) > > -a*b*c*d*t^3 + a^2*c^2*t^2 + a*b*t^3*e - 2*a*c*f*t^2*e - a*d*f*t^3 + > > b^2*d^2*t^2 + b*c*f*t^3 + 2*b*d*f*t^2*e - c*d*t^3*e + > > A0123456789^2*a^2*t + 2*A0123456789*a^2*t^2 + a^2*t^3 - a*b*c*d*t - > > 2*a*b*t^2*e + 2*a*d*f*t^2 + b^2*t^3 - 2*b*c*f*t^2 + c^2*t^3 + > > 2*c*d*t^2*e + d^2*t^3 + f^2*t^3 + f^2*t^2*e^2 + A0123456789^2*t^2 - > > 2*A0123456789*a^2*t + 2*A0123456789*t^3 - 2*a^2*t^2 + a*b*t*e - > > a*d*f*t - 2*b^2*t^2 + b*c*f*t - 2*c^2*t^2 - c*d*t*e - 2*d^2*t^2 - > > 2*f^2*t^2 + t^4 + t^3*e^2 - 2*A0123456789^2*t - 6*A0123456789*t^2 + > > a^2*t + b^2*t + c^2*t + d^2*t + f^2*t - 2*t^2*e^2 + A0123456789^2 - > > 4*t^3 + 6*A0123456789*t + 6*t^2 + t*e^2 - 2*A0123456789 - 4*t + 1 > > > Where does the symbol A0123456789 come from? > > For what it is worth, this happend with this much simpler example: > > sage: m = matrix(4,4, SR(1)) > sage: m[3,3] -=t > sage: m > > [ 1 0 0 0] > [ 0 1 0 0] > [ 0 0 1 0] > [ 0 0 0 -t + 1] > sage: m.determinant() > (t - 1)*(A0123456789 - 1)^3 > > Cheers, > > Florent -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org