On Nov 25, 8:20 pm, Michel <michel.vandenbe...@uhasselt.be> wrote: > ---------------------------------------------------------------------- > | Sage Version 4.2, Release Date: 2009-10-24 | > | Type notebook() for the GUI, and license() for information. | > ---------------------------------------------------------------------- > sage: var("t a b c d e f") > (t, a, b, c, d, e, f) > sage: M=matrix(4,4,[[1-t,-a*t,-e*t,d*t],[a,1-t,-b,-f],[e,b*t,1-t,-c], > [-d,f*t,c*t,1-t]]) > sage: M.determinant() > -(((t - 1)*e + c*d)*b + (c*t*e - (t - 1)*d)*f - (c^2*t + (A0123456789 > + t - 1)^2)*a)*a*t - ((t - 1)*(c*t*e - (t - 1)*d) - (b*d*t + f*t*e)*b > + (b*c*t^2 + (t - 1)*f*t)*a)*d*t + ((t - 1)*((t - 1)*e + c*d) + (b*d*t > + f*t*e)*f + ((t - 1)*b*t - c*f*t)*a)*t*e + (t - 1)*((t - 1)*(c^2*t + > (A0123456789 + t - 1)^2) + ((t - 1)*b*t - c*f*t)*b + (b*c*t^2 + (t - 1) > *f*t)*f) > sage: expand(_) > -a*b*c*d*t^3 + a^2*c^2*t^2 + a*b*t^3*e - 2*a*c*f*t^2*e - a*d*f*t^3 + > b^2*d^2*t^2 + b*c*f*t^3 + 2*b*d*f*t^2*e - c*d*t^3*e + > A0123456789^2*a^2*t + 2*A0123456789*a^2*t^2 + a^2*t^3 - a*b*c*d*t - > 2*a*b*t^2*e + 2*a*d*f*t^2 + b^2*t^3 - 2*b*c*f*t^2 + c^2*t^3 + > 2*c*d*t^2*e + d^2*t^3 + f^2*t^3 + f^2*t^2*e^2 + A0123456789^2*t^2 - > 2*A0123456789*a^2*t + 2*A0123456789*t^3 - 2*a^2*t^2 + a*b*t*e - > a*d*f*t - 2*b^2*t^2 + b*c*f*t - 2*c^2*t^2 - c*d*t*e - 2*d^2*t^2 - > 2*f^2*t^2 + t^4 + t^3*e^2 - 2*A0123456789^2*t - 6*A0123456789*t^2 + > a^2*t + b^2*t + c^2*t + d^2*t + f^2*t - 2*t^2*e^2 + A0123456789^2 - > 4*t^3 + 6*A0123456789*t + 6*t^2 + t*e^2 - 2*A0123456789 - 4*t + 1 > > Where does the symbol A0123456789 come from?
This looks like an after-effect of ticket #6441. Sebastian Pancratz wrote some very fast code to compute determinants over general commutative rings, which proceeds by computing the characteristic polynomial first. When doing this for symbolic matrices it needs to choose a variable name that won't conflict with anything, so it uses "A0123456789". This shouldn't leak out into the output, but it looks like it has done here. -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org