----------------------------------------------------------------------
| Sage Version 4.2, Release Date: 2009-10-24                         |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
sage: var("t a b c d e f")
(t, a, b, c, d, e, f)
sage:  M=matrix(4,4,[[1-t,-a*t,-e*t,d*t],[a,1-t,-b,-f],[e,b*t,1-t,-c],
[-d,f*t,c*t,1-t]])
sage: M.determinant()
-(((t - 1)*e + c*d)*b + (c*t*e - (t - 1)*d)*f - (c^2*t + (A0123456789
+ t - 1)^2)*a)*a*t - ((t - 1)*(c*t*e - (t - 1)*d) - (b*d*t + f*t*e)*b
+ (b*c*t^2 + (t - 1)*f*t)*a)*d*t + ((t - 1)*((t - 1)*e + c*d) + (b*d*t
+ f*t*e)*f + ((t - 1)*b*t - c*f*t)*a)*t*e + (t - 1)*((t - 1)*(c^2*t +
(A0123456789 + t - 1)^2) + ((t - 1)*b*t - c*f*t)*b + (b*c*t^2 + (t - 1)
*f*t)*f)
sage: expand(_)
-a*b*c*d*t^3 + a^2*c^2*t^2 + a*b*t^3*e - 2*a*c*f*t^2*e - a*d*f*t^3 +
b^2*d^2*t^2 + b*c*f*t^3 + 2*b*d*f*t^2*e - c*d*t^3*e +
A0123456789^2*a^2*t + 2*A0123456789*a^2*t^2 + a^2*t^3 - a*b*c*d*t -
2*a*b*t^2*e + 2*a*d*f*t^2 + b^2*t^3 - 2*b*c*f*t^2 + c^2*t^3 +
2*c*d*t^2*e + d^2*t^3 + f^2*t^3 + f^2*t^2*e^2 + A0123456789^2*t^2 -
2*A0123456789*a^2*t + 2*A0123456789*t^3 - 2*a^2*t^2 + a*b*t*e -
a*d*f*t - 2*b^2*t^2 + b*c*f*t - 2*c^2*t^2 - c*d*t*e - 2*d^2*t^2 -
2*f^2*t^2 + t^4 + t^3*e^2 - 2*A0123456789^2*t - 6*A0123456789*t^2 +
a^2*t + b^2*t + c^2*t + d^2*t + f^2*t - 2*t^2*e^2 + A0123456789^2 -
4*t^3 + 6*A0123456789*t + 6*t^2 + t*e^2 - 2*A0123456789 - 4*t + 1

Where does the symbol A0123456789 come from?

-- 
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org

Reply via email to