On Wed, 25 Nov 2009 at 03:20AM -0800, Michel wrote:
> sage: expand(_)
> -a*b*c*d*t^3 + a^2*c^2*t^2 + a*b*t^3*e - 2*a*c*f*t^2*e - a*d*f*t^3 +
> b^2*d^2*t^2 + b*c*f*t^3 + 2*b*d*f*t^2*e - c*d*t^3*e +
> A0123456789^2*a^2*t + 2*A0123456789*a^2*t^2 + a^2*t^3 - a*b*c*d*t -
> 2*a*b*t^2*e + 2*a*d*f*t^2 + b^2*t^3 - 2*b*c*f*t^2 + c^2*t^3 +
> 2*c*d*t^2*e + d^2*t^3 + f^2*t^3 + f^2*t^2*e^2 + A0123456789^2*t^2 -
> 2*A0123456789*a^2*t + 2*A0123456789*t^3 - 2*a^2*t^2 + a*b*t*e -
> a*d*f*t - 2*b^2*t^2 + b*c*f*t - 2*c^2*t^2 - c*d*t*e - 2*d^2*t^2 -
> 2*f^2*t^2 + t^4 + t^3*e^2 - 2*A0123456789^2*t - 6*A0123456789*t^2 +
> a^2*t + b^2*t + c^2*t + d^2*t + f^2*t - 2*t^2*e^2 + A0123456789^2 -
> 4*t^3 + 6*A0123456789*t + 6*t^2 + t*e^2 - 2*A0123456789 - 4*t + 1
> 
> Where does the symbol A0123456789 come from?

I don't know, but I don't get that on my copy of Sage (4.2.1, 64-bit
Linux):

sage: var("t a b c d e f")
(t, a, b, c, d, e, f)
sage: M=matrix(4,4,[[1-t,-a*t,-e*t,d*t],[a,1-t,-b,-f],[e,b*t,1-t,-c],
....: [-d,f*t,c*t,1-t]])
sage: M.determinant()
-a*b*c*d*t^3 + a^2*c^2*t^2 + a*b*t^3*e - 2*a*c*f*t^2*e - a*d*f*t^3 +
b^2*d^2*t^2 + b*c*f*t^3 + 2*b*d*f*t^2*e - c*d*t^3*e + a^2*t^3 -
a*b*c*d*t - 2*a*b*t^2*e + 2*a*d*f*t^2 + b^2*t^3 - 2*b*c*f*t^2 + c^2*t^3
+ 2*c*d*t^2*e + d^2*t^3 + f^2*t^3 + f^2*t^2*e^2 - 2*a^2*t^2 + a*b*t*e -
a*d*f*t - 2*b^2*t^2 + b*c*f*t - 2*c^2*t^2 - c*d*t*e - 2*d^2*t^2 -
2*f^2*t^2 + t^4 + t^3*e^2 + a^2*t + b^2*t + c^2*t + d^2*t + f^2*t -
4*t^3 - 2*t^2*e^2 + 6*t^2 + t*e^2 - 4*t + 1

What version of Sage are you using? What OS, etc? Did you do anything
else in the session that produced the A0123456789?

Dan

-- 
---  Dan Drake
-----  http://mathsci.kaist.ac.kr/~drake
-------

Attachment: signature.asc
Description: Digital signature

Reply via email to