Thanks Sud for in-depth debugging. And thanks Ryan for the explanation. +1 to have a table property to disable stats estimation.
IIUC, the difference between stats estimation and scan with filters is mainly in the partition filters: Iceberg uses filter-push-down to complete partition pruning. So the stats estimation will see all partitions of the table, but actually need to read a small amount of partitions. - Scan with partition filters only needs to read manifest list files, and do partition pruning, select only the manifest that contains specific partitions. - Scan without partition filters needs to read all manifest files. Best, Jingsong On Sat, Jul 18, 2020 at 6:13 AM Ryan Blue <rb...@netflix.com.invalid> wrote: > Hey, great question. I just caught up on the other thread, but let me > provide some context here. > > Spark uses the stats estimation here to determine whether or not to > broadcast. If we returned a default value, then Spark wouldn't be able to > use Iceberg tables in broadcast joins. Even though Spark won't push filters > down before calling this in 2.4, it is still better in many cases to return > the size of the entire table. > > I think it would make sense to be able to disable this using a table > property, when you know that the table is going to be too large to > broadcast un-filtered. > > Also, this is fixed in Spark 3 because we added rules to push filters into > the scan before stats are returned. > > On Fri, Jul 17, 2020 at 1:01 PM Sud <sudssf2...@gmail.com> wrote: > >> As per java doc estimateStatistics does not take into account any >> operators, any reason why iceberg reader implements this? I wonder if it >> would help to make it configurable and return default value. >> >> /** >> * A mix in interface for {@link DataSourceReader}. Data source readers can >> implement this >> * interface to report statistics to Spark. >> * >> * As of Spark 2.4, statistics are reported to the optimizer before any >> operator is pushed to the >> * DataSourceReader. Implementations that return more accurate statistics >> based on pushed operators >> * will not improve query performance until the planner can push operators >> before getting stats. >> */ >> >> >> >> On Fri, Jul 17, 2020 at 12:35 PM Sud <sudssf2...@gmail.com> wrote: >> >>> ok after adding more instrumentation I see that >>> Reader::estimateStatistics may be a culprit. >>> >>> looks like estimated stats may be performing full table estimate and >>> thats why it is so slow. does any one know if it is possible to >>> avoid Reader::estimateStatistics? >>> >>> Also does estimateStatistics use appropriate filters ( I have seen same >>> issue where performing unions) was very slow and estimateStatistics use to >>> take lot of time. >>> >>> @Override >>> public Statistics estimateStatistics() { >>> long sizeInBytes = 0L; >>> long numRows = 0L; >>> >>> for (CombinedScanTask task : tasks()) { >>> for (FileScanTask file : task.files()) { >>> sizeInBytes += file.length(); >>> numRows += file.file().recordCount(); >>> } >>> } >>> >>> return new Stats(sizeInBytes, numRows); >>> } >>> >>> private List<CombinedScanTask> tasks() { >>> if (tasks == null) { >>> TableScan scan = table >>> .newScan() >>> .caseSensitive(caseSensitive) >>> .project(lazySchema()); >>> >>> if (snapshotId != null) { >>> scan = scan.useSnapshot(snapshotId); >>> } >>> >>> if (asOfTimestamp != null) { >>> scan = scan.asOfTime(asOfTimestamp); >>> } >>> >>> if (splitSize != null) { >>> scan = scan.option(TableProperties.SPLIT_SIZE, splitSize.toString()); >>> } >>> >>> if (splitLookback != null) { >>> scan = scan.option(TableProperties.SPLIT_LOOKBACK, >>> splitLookback.toString()); >>> } >>> >>> if (splitOpenFileCost != null) { >>> scan = scan.option(TableProperties.SPLIT_OPEN_FILE_COST, >>> splitOpenFileCost.toString()); >>> } >>> >>> if (filterExpressions != null) { >>> for (Expression filter : filterExpressions) { >>> scan = scan.filter(filter); >>> } >>> } >>> >>> try (CloseableIterable<CombinedScanTask> tasksIterable = >>> scan.planTasks()) { >>> this.tasks = Lists.newArrayList(tasksIterable); >>> } catch (IOException e) { >>> throw new RuntimeIOException(e, "Failed to close table scan: %s", >>> scan); >>> } >>> } >>> >>> return tasks; >>> } >>> >>> >>> On Fri, Jul 17, 2020 at 9:35 AM Sud <sudssf2...@gmail.com> wrote: >>> >>>> Thanks @Jingsong for reply >>>> >>>> Yes one additional data point about the table. >>>> This table is avro table and generated from stream ingestion. We expect >>>> a couple of thousand snapshots created daily. >>>> >>>> We are using appendsBetween API , I am I think any compaction >>>> operation will break the API. but I will take a look at compacting >>>> datafiles and manifest files. >>>> >>>> if I understand what you mentioned above, is the ManifestGroup reader >>>> slow? I wonder if it will help if we add a debug log and log timer for some >>>> of these operations. >>>> >>>> I will keep you updated >>>> >>>> -- >>>> Thanks >>>> >>>> On Fri, Jul 17, 2020 at 1:50 AM Jingsong Li <jingsongl...@gmail.com> >>>> wrote: >>>> >>>>> Hi Sud, >>>>> >>>>> The batch read of the Iceberg table should just read the latest >>>>> snapshot. >>>>> I think this case is that your large tables have a large number of >>>>> manifest files. >>>>> >>>>> 1.The simple way is reducing manifest file numbers: >>>>> - For reducing manifest file number, you can try >>>>> `Actions.rewriteManifests`(Thanks Anton) to compact manifest files. >>>>> - If there are too many small data files, leading to too many manifest >>>>> files even after compacting, you can try `Actions.rewriteDataFiles`(Thanks >>>>> jerryshao) to compact data files. >>>>> >>>>> 2.Another way is parallelizing the opening of the manifest reader. >>>>> Your stack looks like the thread is stuck in >>>>> `DataFileReader.openReader`, at least, it will need to read magic bytes >>>>> from the input stream in `open`, and this looks slow. (At least, the input >>>>> stream needs to read an IO block) >>>>> So can we make `DataFileReader.openReader` parallelize? We should make >>>>> `ManifestGroup.entries` returns a parallel iterable. >>>>> >>>>> Best, >>>>> Jingsong >>>>> >>>>> On Fri, Jul 17, 2020 at 7:23 AM Sud <sudssf2...@gmail.com> wrote: >>>>> >>>>>> HI Iceberg-devs >>>>>> >>>>>> We are trying to root cause issue where driver get stuck when trying >>>>>> to read comparatively large tables ( > 2000 snapshots) >>>>>> >>>>>> When I tried to look at the thread dump of the driver's main thread I >>>>>> see that thread is stuck in planning tasks. I also noticed that >>>>>> iceberg-worker-pool >>>>>> is idle and mostly 1 thread is active. >>>>>> Has anyone faced a similar issue? what parameters can be used to >>>>>> optimize reads for tables with large number of snapshots ( with smaller >>>>>> data files) >>>>>> >>>>>> >>>>>> java.net.SocketInputStream.socketRead0(Native Method) >>>>>> java.net.SocketInputStream.socketRead(SocketInputStream.java:116) >>>>>> java.net.SocketInputStream.read(SocketInputStream.java:171) >>>>>> java.net.SocketInputStream.read(SocketInputStream.java:141) >>>>>> sun.security.ssl.InputRecord.readFully(InputRecord.java:465) >>>>>> sun.security.ssl.InputRecord.read(InputRecord.java:503) >>>>>> sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:990) => >>>>>> holding Monitor(java.lang.Object@580832623}) >>>>>> sun.security.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:948) >>>>>> sun.security.ssl.AppInputStream.read(AppInputStream.java:105) => holding >>>>>> Monitor(sun.security.ssl.AppInputStream@894541691}) >>>>>> org.apache.http.impl.io.SessionInputBufferImpl.streamRead(SessionInputBufferImpl.java:137) >>>>>> org.apache.http.impl.io.SessionInputBufferImpl.fillBuffer(SessionInputBufferImpl.java:153) >>>>>> org.apache.http.impl.io.SessionInputBufferImpl.readLine(SessionInputBufferImpl.java:280) >>>>>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:138) >>>>>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:56) >>>>>> org.apache.http.impl.io.AbstractMessageParser.parse(AbstractMessageParser.java:259) >>>>>> org.apache.http.impl.DefaultBHttpClientConnection.receiveResponseHeader(DefaultBHttpClientConnection.java:163) >>>>>> org.apache.http.impl.conn.CPoolProxy.receiveResponseHeader(CPoolProxy.java:157) >>>>>> org.apache.http.protocol.HttpRequestExecutor.doReceiveResponse(HttpRequestExecutor.java:273) >>>>>> com.amazonaws.http.protocol.SdkHttpRequestExecutor.doReceiveResponse(SdkHttpRequestExecutor.java:82) >>>>>> org.apache.http.protocol.HttpRequestExecutor.execute(HttpRequestExecutor.java:125) >>>>>> org.apache.http.impl.execchain.MainClientExec.execute(MainClientExec.java:272) >>>>>> org.apache.http.impl.execchain.ProtocolExec.execute(ProtocolExec.java:186) >>>>>> org.apache.http.impl.client.InternalHttpClient.doExecute(InternalHttpClient.java:185) >>>>>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:83) >>>>>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:56) >>>>>> com.amazonaws.http.apache.client.impl.SdkHttpClient.execute(SdkHttpClient.java:72) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1297) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1113) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:770) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:744) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:726) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:686) >>>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:668) >>>>>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:532) >>>>>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:512) >>>>>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4926) >>>>>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4872) >>>>>> com.amazonaws.services.s3.AmazonS3Client.getObject(AmazonS3Client.java:1472) >>>>>> org.apache.hadoop.fs.s3a.S3AInputStream.reopen(S3AInputStream.java:148) >>>>>> org.apache.hadoop.fs.s3a.S3AInputStream.lazySeek(S3AInputStream.java:281) >>>>>> org.apache.hadoop.fs.s3a.S3AInputStream.read(S3AInputStream.java:364) => >>>>>> holding Monitor(org.apache.hadoop.fs.s3a.S3AInputStream@1577065760}) >>>>>> java.io.DataInputStream.read(DataInputStream.java:149) >>>>>> org.apache.iceberg.hadoop.HadoopStreams$HadoopSeekableInputStream.read(HadoopStreams.java:112) >>>>>> org.apache.iceberg.avro.AvroIO$AvroInputStreamAdapter.read(AvroIO.java:106) >>>>>> org.apache.iceberg.shaded.org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55) >>>>>> org.apache.iceberg.avro.AvroIterable.newFileReader(AvroIterable.java:94) >>>>>> org.apache.iceberg.avro.AvroIterable.getMetadata(AvroIterable.java:66) >>>>>> org.apache.iceberg.ManifestReader.<init>(ManifestReader.java:141) >>>>>> org.apache.iceberg.ManifestReader.read(ManifestReader.java:119) >>>>>> org.apache.iceberg.ManifestGroup.lambda$entries$13(ManifestGroup.java:212) >>>>>> org.apache.iceberg.ManifestGroup$$Lambda$89/1042679820.apply(Unknown >>>>>> Source) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$6.transform(Iterators.java:783) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47) >>>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.submitNextTask(ParallelIterable.java:113) >>>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.checkTasks(ParallelIterable.java:100) >>>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.hasNext(ParallelIterable.java:137) >>>>>> => holding >>>>>> Monitor(org.apache.iceberg.util.ParallelIterable$ParallelIterator@1724178871}) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.getTopMetaIterator(Iterators.java:1309) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.hasNext(Iterators.java:1325) >>>>>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:111) >>>>>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:87) >>>>>> org.apache.iceberg.io.CloseableIterable$3$1.next(CloseableIterable.java:94) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators.addAll(Iterators.java:356) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:143) >>>>>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:130) >>>>>> org.apache.iceberg.spark.source.Reader.tasks(Reader.java:295) >>>>>> org.apache.iceberg.spark.source.Reader.planInputPartitions(Reader.java:196) >>>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions$lzycompute(DataSourceV2ScanExec.scala:76) >>>>>> => holding >>>>>> Monitor(org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec@853913013}) >>>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions(DataSourceV2ScanExec.scala:75) >>>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.outputPartitioning(DataSourceV2ScanExec.scala:65) >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> -- >>>>>> Thanks >>>>>> >>>>> >>>>> >>>>> -- >>>>> Best, Jingsong Lee >>>>> >>>> > > -- > Ryan Blue > Software Engineer > Netflix > -- Best, Jingsong Lee