ok after adding more instrumentation I see that Reader::estimateStatistics may be a culprit.
looks like estimated stats may be performing full table estimate and thats why it is so slow. does any one know if it is possible to avoid Reader::estimateStatistics? Also does estimateStatistics use appropriate filters ( I have seen same issue where performing unions) was very slow and estimateStatistics use to take lot of time. @Override public Statistics estimateStatistics() { long sizeInBytes = 0L; long numRows = 0L; for (CombinedScanTask task : tasks()) { for (FileScanTask file : task.files()) { sizeInBytes += file.length(); numRows += file.file().recordCount(); } } return new Stats(sizeInBytes, numRows); } private List<CombinedScanTask> tasks() { if (tasks == null) { TableScan scan = table .newScan() .caseSensitive(caseSensitive) .project(lazySchema()); if (snapshotId != null) { scan = scan.useSnapshot(snapshotId); } if (asOfTimestamp != null) { scan = scan.asOfTime(asOfTimestamp); } if (splitSize != null) { scan = scan.option(TableProperties.SPLIT_SIZE, splitSize.toString()); } if (splitLookback != null) { scan = scan.option(TableProperties.SPLIT_LOOKBACK, splitLookback.toString()); } if (splitOpenFileCost != null) { scan = scan.option(TableProperties.SPLIT_OPEN_FILE_COST, splitOpenFileCost.toString()); } if (filterExpressions != null) { for (Expression filter : filterExpressions) { scan = scan.filter(filter); } } try (CloseableIterable<CombinedScanTask> tasksIterable = scan.planTasks()) { this.tasks = Lists.newArrayList(tasksIterable); } catch (IOException e) { throw new RuntimeIOException(e, "Failed to close table scan: %s", scan); } } return tasks; } On Fri, Jul 17, 2020 at 9:35 AM Sud <sudssf2...@gmail.com> wrote: > Thanks @Jingsong for reply > > Yes one additional data point about the table. > This table is avro table and generated from stream ingestion. We expect a > couple of thousand snapshots created daily. > > We are using appendsBetween API , I am I think any compaction operation > will break the API. but I will take a look at compacting datafiles and > manifest files. > > if I understand what you mentioned above, is the ManifestGroup reader > slow? I wonder if it will help if we add a debug log and log timer for some > of these operations. > > I will keep you updated > > -- > Thanks > > On Fri, Jul 17, 2020 at 1:50 AM Jingsong Li <jingsongl...@gmail.com> > wrote: > >> Hi Sud, >> >> The batch read of the Iceberg table should just read the latest snapshot. >> I think this case is that your large tables have a large number of >> manifest files. >> >> 1.The simple way is reducing manifest file numbers: >> - For reducing manifest file number, you can try >> `Actions.rewriteManifests`(Thanks Anton) to compact manifest files. >> - If there are too many small data files, leading to too many manifest >> files even after compacting, you can try `Actions.rewriteDataFiles`(Thanks >> jerryshao) to compact data files. >> >> 2.Another way is parallelizing the opening of the manifest reader. >> Your stack looks like the thread is stuck in `DataFileReader.openReader`, >> at least, it will need to read magic bytes from the input stream in `open`, >> and this looks slow. (At least, the input stream needs to read an IO block) >> So can we make `DataFileReader.openReader` parallelize? We should make >> `ManifestGroup.entries` returns a parallel iterable. >> >> Best, >> Jingsong >> >> On Fri, Jul 17, 2020 at 7:23 AM Sud <sudssf2...@gmail.com> wrote: >> >>> HI Iceberg-devs >>> >>> We are trying to root cause issue where driver get stuck when trying to >>> read comparatively large tables ( > 2000 snapshots) >>> >>> When I tried to look at the thread dump of the driver's main thread I >>> see that thread is stuck in planning tasks. I also noticed that >>> iceberg-worker-pool >>> is idle and mostly 1 thread is active. >>> Has anyone faced a similar issue? what parameters can be used to >>> optimize reads for tables with large number of snapshots ( with smaller >>> data files) >>> >>> >>> java.net.SocketInputStream.socketRead0(Native Method) >>> java.net.SocketInputStream.socketRead(SocketInputStream.java:116) >>> java.net.SocketInputStream.read(SocketInputStream.java:171) >>> java.net.SocketInputStream.read(SocketInputStream.java:141) >>> sun.security.ssl.InputRecord.readFully(InputRecord.java:465) >>> sun.security.ssl.InputRecord.read(InputRecord.java:503) >>> sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:990) => >>> holding Monitor(java.lang.Object@580832623}) >>> sun.security.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:948) >>> sun.security.ssl.AppInputStream.read(AppInputStream.java:105) => holding >>> Monitor(sun.security.ssl.AppInputStream@894541691}) >>> org.apache.http.impl.io.SessionInputBufferImpl.streamRead(SessionInputBufferImpl.java:137) >>> org.apache.http.impl.io.SessionInputBufferImpl.fillBuffer(SessionInputBufferImpl.java:153) >>> org.apache.http.impl.io.SessionInputBufferImpl.readLine(SessionInputBufferImpl.java:280) >>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:138) >>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:56) >>> org.apache.http.impl.io.AbstractMessageParser.parse(AbstractMessageParser.java:259) >>> org.apache.http.impl.DefaultBHttpClientConnection.receiveResponseHeader(DefaultBHttpClientConnection.java:163) >>> org.apache.http.impl.conn.CPoolProxy.receiveResponseHeader(CPoolProxy.java:157) >>> org.apache.http.protocol.HttpRequestExecutor.doReceiveResponse(HttpRequestExecutor.java:273) >>> com.amazonaws.http.protocol.SdkHttpRequestExecutor.doReceiveResponse(SdkHttpRequestExecutor.java:82) >>> org.apache.http.protocol.HttpRequestExecutor.execute(HttpRequestExecutor.java:125) >>> org.apache.http.impl.execchain.MainClientExec.execute(MainClientExec.java:272) >>> org.apache.http.impl.execchain.ProtocolExec.execute(ProtocolExec.java:186) >>> org.apache.http.impl.client.InternalHttpClient.doExecute(InternalHttpClient.java:185) >>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:83) >>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:56) >>> com.amazonaws.http.apache.client.impl.SdkHttpClient.execute(SdkHttpClient.java:72) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1297) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1113) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:770) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:744) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:726) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:686) >>> com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:668) >>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:532) >>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:512) >>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4926) >>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4872) >>> com.amazonaws.services.s3.AmazonS3Client.getObject(AmazonS3Client.java:1472) >>> org.apache.hadoop.fs.s3a.S3AInputStream.reopen(S3AInputStream.java:148) >>> org.apache.hadoop.fs.s3a.S3AInputStream.lazySeek(S3AInputStream.java:281) >>> org.apache.hadoop.fs.s3a.S3AInputStream.read(S3AInputStream.java:364) => >>> holding Monitor(org.apache.hadoop.fs.s3a.S3AInputStream@1577065760}) >>> java.io.DataInputStream.read(DataInputStream.java:149) >>> org.apache.iceberg.hadoop.HadoopStreams$HadoopSeekableInputStream.read(HadoopStreams.java:112) >>> org.apache.iceberg.avro.AvroIO$AvroInputStreamAdapter.read(AvroIO.java:106) >>> org.apache.iceberg.shaded.org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55) >>> org.apache.iceberg.avro.AvroIterable.newFileReader(AvroIterable.java:94) >>> org.apache.iceberg.avro.AvroIterable.getMetadata(AvroIterable.java:66) >>> org.apache.iceberg.ManifestReader.<init>(ManifestReader.java:141) >>> org.apache.iceberg.ManifestReader.read(ManifestReader.java:119) >>> org.apache.iceberg.ManifestGroup.lambda$entries$13(ManifestGroup.java:212) >>> org.apache.iceberg.ManifestGroup$$Lambda$89/1042679820.apply(Unknown Source) >>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$6.transform(Iterators.java:783) >>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47) >>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47) >>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.submitNextTask(ParallelIterable.java:113) >>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.checkTasks(ParallelIterable.java:100) >>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.hasNext(ParallelIterable.java:137) >>> => holding >>> Monitor(org.apache.iceberg.util.ParallelIterable$ParallelIterator@1724178871}) >>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42) >>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42) >>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.getTopMetaIterator(Iterators.java:1309) >>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.hasNext(Iterators.java:1325) >>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:111) >>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:87) >>> org.apache.iceberg.io.CloseableIterable$3$1.next(CloseableIterable.java:94) >>> org.apache.iceberg.shaded.com.google.common.collect.Iterators.addAll(Iterators.java:356) >>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:143) >>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:130) >>> org.apache.iceberg.spark.source.Reader.tasks(Reader.java:295) >>> org.apache.iceberg.spark.source.Reader.planInputPartitions(Reader.java:196) >>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions$lzycompute(DataSourceV2ScanExec.scala:76) >>> => holding >>> Monitor(org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec@853913013}) >>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions(DataSourceV2ScanExec.scala:75) >>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.outputPartitioning(DataSourceV2ScanExec.scala:65) >>> >>> >>> >>> >>> -- >>> Thanks >>> >> >> >> -- >> Best, Jingsong Lee >> >