As per java doc estimateStatistics does not take into account any
operators, any reason why iceberg reader implements this? I wonder if it
would help to make it configurable and return default value.

/**
 * A mix in interface for {@link DataSourceReader}. Data source
readers can implement this
 * interface to report statistics to Spark.
 *
 * As of Spark 2.4, statistics are reported to the optimizer before
any operator is pushed to the
 * DataSourceReader. Implementations that return more accurate
statistics based on pushed operators
 * will not improve query performance until the planner can push
operators before getting stats.
 */



On Fri, Jul 17, 2020 at 12:35 PM Sud <sudssf2...@gmail.com> wrote:

> ok after adding more instrumentation I see that Reader::estimateStatistics
> may be a culprit.
>
> looks like estimated stats may be performing full table estimate and thats
> why it is so slow. does any one know if it is possible to
> avoid Reader::estimateStatistics?
>
> Also does estimateStatistics use appropriate filters ( I have seen same
> issue where performing unions) was very slow and estimateStatistics use to
> take lot of time.
>
> @Override
> public Statistics estimateStatistics() {
>   long sizeInBytes = 0L;
>   long numRows = 0L;
>
>   for (CombinedScanTask task : tasks()) {
>     for (FileScanTask file : task.files()) {
>       sizeInBytes += file.length();
>       numRows += file.file().recordCount();
>     }
>   }
>
>   return new Stats(sizeInBytes, numRows);
> }
>
> private List<CombinedScanTask> tasks() {
>   if (tasks == null) {
>     TableScan scan = table
>         .newScan()
>         .caseSensitive(caseSensitive)
>         .project(lazySchema());
>
>     if (snapshotId != null) {
>       scan = scan.useSnapshot(snapshotId);
>     }
>
>     if (asOfTimestamp != null) {
>       scan = scan.asOfTime(asOfTimestamp);
>     }
>
>     if (splitSize != null) {
>       scan = scan.option(TableProperties.SPLIT_SIZE, splitSize.toString());
>     }
>
>     if (splitLookback != null) {
>       scan = scan.option(TableProperties.SPLIT_LOOKBACK, 
> splitLookback.toString());
>     }
>
>     if (splitOpenFileCost != null) {
>       scan = scan.option(TableProperties.SPLIT_OPEN_FILE_COST, 
> splitOpenFileCost.toString());
>     }
>
>     if (filterExpressions != null) {
>       for (Expression filter : filterExpressions) {
>         scan = scan.filter(filter);
>       }
>     }
>
>     try (CloseableIterable<CombinedScanTask> tasksIterable = 
> scan.planTasks()) {
>       this.tasks = Lists.newArrayList(tasksIterable);
>     }  catch (IOException e) {
>       throw new RuntimeIOException(e, "Failed to close table scan: %s", scan);
>     }
>   }
>
>   return tasks;
> }
>
>
> On Fri, Jul 17, 2020 at 9:35 AM Sud <sudssf2...@gmail.com> wrote:
>
>> Thanks @Jingsong for reply
>>
>> Yes one additional data point about the table.
>> This table is avro table and generated from stream ingestion. We expect a
>> couple of thousand snapshots created daily.
>>
>> We are using appendsBetween API , I am I think any compaction operation
>> will break the API. but I will take a look at compacting datafiles and
>> manifest files.
>>
>> if I understand what you mentioned above, is the ManifestGroup reader
>> slow? I wonder if it will help if we add a debug log and log timer for some
>> of these operations.
>>
>> I will keep you updated
>>
>> --
>> Thanks
>>
>> On Fri, Jul 17, 2020 at 1:50 AM Jingsong Li <jingsongl...@gmail.com>
>> wrote:
>>
>>> Hi Sud,
>>>
>>> The batch read of the Iceberg table should just read the latest snapshot.
>>> I think this case is that your large tables have a large number of
>>> manifest files.
>>>
>>> 1.The simple way is reducing manifest file numbers:
>>> - For reducing manifest file number, you can try
>>> `Actions.rewriteManifests`(Thanks Anton) to compact manifest files.
>>> - If there are too many small data files, leading to too many manifest
>>> files even after compacting, you can try `Actions.rewriteDataFiles`(Thanks
>>> jerryshao) to compact data files.
>>>
>>> 2.Another way is parallelizing the opening of the manifest reader.
>>> Your stack looks like the thread is stuck in
>>> `DataFileReader.openReader`, at least, it will need to read magic bytes
>>> from the input stream in `open`, and this looks slow. (At least, the input
>>> stream needs to read an IO block)
>>> So can we make `DataFileReader.openReader` parallelize? We should make
>>> `ManifestGroup.entries` returns a parallel iterable.
>>>
>>> Best,
>>> Jingsong
>>>
>>> On Fri, Jul 17, 2020 at 7:23 AM Sud <sudssf2...@gmail.com> wrote:
>>>
>>>> HI Iceberg-devs
>>>>
>>>> We are trying to root cause issue where driver get stuck when trying to
>>>> read comparatively large tables ( > 2000 snapshots)
>>>>
>>>> When I tried to look at the thread dump of the driver's main thread I
>>>> see that thread is stuck in planning tasks. I also noticed that 
>>>> iceberg-worker-pool
>>>> is idle and mostly 1 thread is active.
>>>> Has anyone faced a similar issue? what parameters can be used to
>>>> optimize reads for tables with large number of snapshots ( with smaller
>>>> data files)
>>>>
>>>>
>>>> java.net.SocketInputStream.socketRead0(Native Method)
>>>> java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
>>>> java.net.SocketInputStream.read(SocketInputStream.java:171)
>>>> java.net.SocketInputStream.read(SocketInputStream.java:141)
>>>> sun.security.ssl.InputRecord.readFully(InputRecord.java:465)
>>>> sun.security.ssl.InputRecord.read(InputRecord.java:503)
>>>> sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:990) => 
>>>> holding Monitor(java.lang.Object@580832623})
>>>> sun.security.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:948)
>>>> sun.security.ssl.AppInputStream.read(AppInputStream.java:105) => holding 
>>>> Monitor(sun.security.ssl.AppInputStream@894541691})
>>>> org.apache.http.impl.io.SessionInputBufferImpl.streamRead(SessionInputBufferImpl.java:137)
>>>> org.apache.http.impl.io.SessionInputBufferImpl.fillBuffer(SessionInputBufferImpl.java:153)
>>>> org.apache.http.impl.io.SessionInputBufferImpl.readLine(SessionInputBufferImpl.java:280)
>>>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:138)
>>>> org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:56)
>>>> org.apache.http.impl.io.AbstractMessageParser.parse(AbstractMessageParser.java:259)
>>>> org.apache.http.impl.DefaultBHttpClientConnection.receiveResponseHeader(DefaultBHttpClientConnection.java:163)
>>>> org.apache.http.impl.conn.CPoolProxy.receiveResponseHeader(CPoolProxy.java:157)
>>>> org.apache.http.protocol.HttpRequestExecutor.doReceiveResponse(HttpRequestExecutor.java:273)
>>>> com.amazonaws.http.protocol.SdkHttpRequestExecutor.doReceiveResponse(SdkHttpRequestExecutor.java:82)
>>>> org.apache.http.protocol.HttpRequestExecutor.execute(HttpRequestExecutor.java:125)
>>>> org.apache.http.impl.execchain.MainClientExec.execute(MainClientExec.java:272)
>>>> org.apache.http.impl.execchain.ProtocolExec.execute(ProtocolExec.java:186)
>>>> org.apache.http.impl.client.InternalHttpClient.doExecute(InternalHttpClient.java:185)
>>>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:83)
>>>> org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:56)
>>>> com.amazonaws.http.apache.client.impl.SdkHttpClient.execute(SdkHttpClient.java:72)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1297)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1113)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:770)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:744)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:726)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:686)
>>>> com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:668)
>>>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:532)
>>>> com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:512)
>>>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4926)
>>>> com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4872)
>>>> com.amazonaws.services.s3.AmazonS3Client.getObject(AmazonS3Client.java:1472)
>>>> org.apache.hadoop.fs.s3a.S3AInputStream.reopen(S3AInputStream.java:148)
>>>> org.apache.hadoop.fs.s3a.S3AInputStream.lazySeek(S3AInputStream.java:281)
>>>> org.apache.hadoop.fs.s3a.S3AInputStream.read(S3AInputStream.java:364) => 
>>>> holding Monitor(org.apache.hadoop.fs.s3a.S3AInputStream@1577065760})
>>>> java.io.DataInputStream.read(DataInputStream.java:149)
>>>> org.apache.iceberg.hadoop.HadoopStreams$HadoopSeekableInputStream.read(HadoopStreams.java:112)
>>>> org.apache.iceberg.avro.AvroIO$AvroInputStreamAdapter.read(AvroIO.java:106)
>>>> org.apache.iceberg.shaded.org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55)
>>>> org.apache.iceberg.avro.AvroIterable.newFileReader(AvroIterable.java:94)
>>>> org.apache.iceberg.avro.AvroIterable.getMetadata(AvroIterable.java:66)
>>>> org.apache.iceberg.ManifestReader.<init>(ManifestReader.java:141)
>>>> org.apache.iceberg.ManifestReader.read(ManifestReader.java:119)
>>>> org.apache.iceberg.ManifestGroup.lambda$entries$13(ManifestGroup.java:212)
>>>> org.apache.iceberg.ManifestGroup$$Lambda$89/1042679820.apply(Unknown 
>>>> Source)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$6.transform(Iterators.java:783)
>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47)
>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47)
>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.submitNextTask(ParallelIterable.java:113)
>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.checkTasks(ParallelIterable.java:100)
>>>> org.apache.iceberg.util.ParallelIterable$ParallelIterator.hasNext(ParallelIterable.java:137)
>>>>  => holding 
>>>> Monitor(org.apache.iceberg.util.ParallelIterable$ParallelIterator@1724178871})
>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42)
>>>> org.apache.iceberg.shaded.com.google.common.collect.TransformedIterator.hasNext(TransformedIterator.java:42)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.getTopMetaIterator(Iterators.java:1309)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators$ConcatenatedIterator.hasNext(Iterators.java:1325)
>>>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:111)
>>>> org.apache.iceberg.util.BinPacking$PackingIterator.next(BinPacking.java:87)
>>>> org.apache.iceberg.io.CloseableIterable$3$1.next(CloseableIterable.java:94)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Iterators.addAll(Iterators.java:356)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:143)
>>>> org.apache.iceberg.shaded.com.google.common.collect.Lists.newArrayList(Lists.java:130)
>>>> org.apache.iceberg.spark.source.Reader.tasks(Reader.java:295)
>>>> org.apache.iceberg.spark.source.Reader.planInputPartitions(Reader.java:196)
>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions$lzycompute(DataSourceV2ScanExec.scala:76)
>>>>  => holding 
>>>> Monitor(org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec@853913013})
>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.partitions(DataSourceV2ScanExec.scala:75)
>>>> org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExec.outputPartitioning(DataSourceV2ScanExec.scala:65)
>>>>
>>>>
>>>>
>>>>
>>>> --
>>>> Thanks
>>>>
>>>
>>>
>>> --
>>> Best, Jingsong Lee
>>>
>>

Reply via email to