Jürgen,
        The proposed change to DIVJ does not work because 'q1' is a
complex number, so the '×' in '× q1' is the complex complement
function, not the sign function.  I tried the proposed change and every
test fails.
        I will try to hack DIVJ to use a floor towards zero instead of
towards minus infinity for the real and imaginaryparts of the quotient
and see what happens.
        Correct me if I am wrong, but my mind set is that the APL
residue function has to satisfy the following invariants:1) The order
of the complete residue system (residue count) for a given modulo 'n'
has to equal the norm of 'n'.2) And as Jay Foad so succinctly expressed
it, the residue function has to be idempotent with respect to its right
argument,     e.g.,  ( n | m ) = n | n | m .regardless of the
implementation of the residue function.
Later,
Fred 



On Wed, 2017-06-21 at 19:46 +0200, Juergen Sauermann wrote:
>     Hi Fred,
> 
>       
> 
>       I have a question about the MOD_test.apl that you kindly
>       provided.
> 
>       
> 
>       In function DIVJ on line 57 ff it says:
> 
>       
> 
>       z ← q , a - b × q
>           ← CMPLX ⌊ ( 9 11 ) ○ a ÷ b
> 
>       
> 
>       so the quotient is rounded down towards minus infinity.
> 
>       
> 
>       I wonder if that should be something like
> 
>       
> 
>       z ← q , (× q1) × a
>           - b × q ← CMPLX ⌊ ∣ 9 11 ○ q1 ← a ÷ b
> 
>       
> 
>       so that the quotient is rounded towards 0? Interestingly IBM
> and
>       ISO
> 
>       give different definitions for the residue in terms of APL:
> 
>       
> 
>       IBM (language reference, page 227):
> 
>       Z←L∣R
> 
>         Z is R-L×⌊
>           R÷L+L=0
> 
>       
> 
>       ISO (chapter 7.2.9 Residue): 
> 
>       R←Q∣P
> 
>         R←P-(×P)×|Q×⌊|P÷Q
> 
>           and return R if (×R)=×Q, or R+Q
> 
>           otherwise.
> 
>          
> 
>     That suggest that IBM rounds the quotient down towards minus
>     infinity while ISO rounds
> 
>      towards 0.
> 
>     
> 
>     My naive view on remainder is that the nearest integer quotient
>     shall be smaller in
> 
>     magnitude and not smaller in value. Regarding your proposal
> (which
>     is different from
> 
>     both IBM and ISO) my concern is that may lead to different
> results
>     for modulo N and
> 
>     modulo N×1J0
> 
>     
> 
>     Best Regards,
> 
>     Jürgen Sauermann
> 
>     
> 
>     
> 
>     On 06/21/2017 03:08 AM, Frederick Pitts
>       wrote:
> 
>     
>     
> >       
> >       Jürgen,
> >       
> > 
> >         
> >        This message is being
> >           resent because last minute changes I made to CRS0.apl and
> >           CRS1.apl do not output the
> >       data I intended.  This
> >           message has corrected versions of those files attached.
> >            Please discard the old CRS0.apl and CRS1.apl files.  The
> >           first line of output is the modulo basis, the second line
> > is the calculated
> >           complete residue system values and the third line is the
> >           number of residues in the CRS on the previous line.
> >       
> > 
> >         
> >        CRSOTST0.apl and
> >           CRSOTST1.apl are unchanged.
> >       
> > 
> >         
> >        Also please find attached
> >           MOD_TEST.apl which compares the residues calculated by
> > MODJ
> >           and the builtin residue function and reports
> > discrepancies.
> >            The first column of output is the modulo basis, the
> > second
> >           column the right argument to the functions, the third
> > column
> >           the MODJ result and the fourth column is the builtin
> > residue
> >           function result.
> >       
> > 
> >         
> >       Regards
> >       
> > 
> >         
> >       Fred
> >       
> > 
> >       
> >       Hello Jürgen,
> >             SVN 964 moved us in the right direction but not
> > completely out of the
> >       woods.  SVN 964 still exhibits errors.  For instance
> >             2J6 | 5J5
> >       ¯1J7
> >             2J6 | ¯1J7
> >       ¯3J1
> >             2J6 | ¯3J1
> >       ¯3J1
> >             I found this and previous residue function errors
> > using the attached APL
> >       code files.  The files with base name ending in '0' use the
> > builtin residue
> >       function.  Those with base name ending in '1' use a residue
> > function implemented
> >       in APL.  The files with base name beginning with 'CRSOTST'
> > test if the order of
> >       the complete residue system (CRS) equals the norm of the
> > modulo basis.  That
> >       test fails for several modulo bases, 2J6 being one of them,
> > using the builtin
> >       residue function. No errors are detected with the APL
> > implementation.  The other files
> >       can be used to plot the CRS for a given modulo basis where
> > 'a' and 'b' in
> >       'a + b * i' are limited to +15 to -15 range.  A full screen
> > terminal window is
> >       needed to see the plot.
> >             My APL implementation of the residue function is very
> > close to what you
> >       described in your previous email.  Maybe comparing the two
> > implementations will
> >       give insight into why the builtin residue function fails for
> > some modulo bases.
> >             I make no assertion that my implementation is correct
> > in all
> >       aspects.
> >       Regards,
> >       Fred
> >       On Tue, 2017-06-20 at 14:14 +0200, Juergen Sauermann wrote:
> >       
> > >  Hi Frederick,
> > > 
> > >           
> > > 
> > >           the algorithm for A ∣ B used in GNU APL is this:
> > > 
> > >           
> > > 
> > >           - compute the
> > >               quotient Q←B÷A,
> > > 
> > >             - "round down" Q to the next (complex) integer
> > >               Q1,
> > > 
> > >             - return B - Q1×A
> > > 
> > >           
> > > 
> > >           Now the problem seems to be what is meant by "round
> > > down".
> > >           There are two candidates:
> > > 
> > >           
> > > 
> > >             Q1 ← ⌊
> > >               Q                                          i.e. use
> > > APL
> > >               floor to round down Q
> > > 
> > >               Q1 ← Complex( floor(Q.real(), floor(Q.imag()) )  
> > > i,e,
> > >               use C/C++ floor() to round down Q.
> > > 
> > >             
> > > 
> > >           In your  5J3 ∣ 14J5 example, the quotient is 2.5J¯0.5,
> > >           which gives different results for the APL floor ⌊ and
> > >           the C/C++ floor().
> > > 
> > >           
> > > 
> > >           The APL floor ⌊2.5J¯0.5 is 3J¯1 (a
> > >           somewhat dubious invention in the ISO standard on page
> > > 19,
> > >           which I used up to
> > > 
> > >           including SVN 963), while the C/C++ floor() is 2J¯1.
> > > The difference
> > >           between the APL floor and the C/C++ floor is 1.0 which,
> > > 
> > >           multiplied by the divisor, explains the differences
> > > that we
> > >           see.
> > > 
> > >           
> > > 
> > >           As of SVN 964 I have changed the residue function (∣)
> > >           to use the C/C++ floor instead of the APL floor. The
> > > APL floor
> > >           and
> > > 
> > >           Ceiling functions (⌊ and ⌈) are still using the
> > >           apparently broken definition in the ISO standard.
> > > 
> > >           
> > > 
> > >           I hope this works better for you. At least I am getting
> > > this
> > >           in SVN 964:
> > > 
> > >           
> > > 
> > >                 5J3 |
> > >               14J5
> > > 
> > >             1J4
> > > 
> > >                   5J3 | 1J4
> > > 
> > >             1J4
> > > 
> > >           
> > > 
> > >           whereas SVN 963 was giving:
> > > 
> > >           
> > > 
> > >                 5J3 |
> > >               14J5
> > > 
> > >             ¯4J1
> > > 
> > >                   5J3 | 1J4
> > > 
> > >             ¯4J1
> > > 
> > >           
> > > 
> > >           
> > > 
> > >           Best Regards,
> > > 
> > >           /// Jürgen
> > > 
> > >           
> > > 
> > >         
> > > 
> > >         
> > > 
> > >         On 06/19/2017 07:03 PM, Frederick
> > >           Pitts wrote:
> > > 
> > >         
> > >         
> > > >           Jürgen,
> > > > 
> > > >         With gnu apl (svn 961 on Fedora 25, Intel(R) Core(TM)
> > > > i7-6700
> > > > CPU), the residue function (∣) yields the following:
> > > > 
> > > >       5J3 ∣ 14J5
> > > > 1J4
> > > >       5J3 | 1J4
> > > > ¯4J1
> > > >       5J3 | ¯4J1
> > > > ¯4J1
> > > > The above result means that two elements in the complete
> > > > residue system
> > > > (CSR) for mod 5J3 are equal, i.e. 1J4 = ¯4J1 mod 5J3, which is
> > > > not
> > > > allowed.  None of the elements of a CSR can be equal modulo the
> > > > CSR's
> > > > basis.
> > > > 
> > > > Regards,
> > > > 
> > > > Fred
> > > > 
> > > > 
> > > >         
> > > 
> > >         
> > > 
> > >       
> > 
> >     
> 
>     
> 
>   
> 

Reply via email to