I created a JIRA: https://issues.apache.org/jira/browse/SPARK-14229
On Mon, Mar 28, 2016 at 7:43 PM, Russell Jurney <russell.jur...@gmail.com> wrote: > Ted, I am using the .rdd method, see above, but for some reason these RDDs > can't be saved to MongoDB or ElasticSearch. > > I think this is a bug in PySpark/DataFrame. I can't think of another > explanation... somehow DataFrame.rdd RDDs are not able to be stored to an > arbitrary Hadoop OutputFormat. When I do this: > > on_time_lines = > sc.textFile("../data/On_Time_On_Time_Performance_2015.jsonl.gz") > on_time_performance = on_time_lines.map(lambda x: json.loads(x)) > > > on_time_performance.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') > > > It works. Same data, but loaded as textFile instead of DataFrame (via > json/parquet dataframe loading). > > It is the DataFrame.rdd bit that is broken. I will file a JIRA. > > Does anyone know a workaround? > > On Mon, Mar 28, 2016 at 7:28 PM, Ted Yu <yuzhih...@gmail.com> wrote: > >> See this method: >> >> lazy val rdd: RDD[T] = { >> >> On Mon, Mar 28, 2016 at 6:30 PM, Russell Jurney <russell.jur...@gmail.com >> > wrote: >> >>> Ok, I'm also unable to save to Elasticsearch using a dataframe's RDD. >>> This seems related to DataFrames. Is there a way to convert a DataFrame's >>> RDD to a 'normal' RDD? >>> >>> >>> On Mon, Mar 28, 2016 at 6:20 PM, Russell Jurney < >>> russell.jur...@gmail.com> wrote: >>> >>>> I filed a JIRA <https://jira.mongodb.org/browse/HADOOP-276> in the >>>> mongo-hadoop project, but I'm curious if anyone else has seen this issue. >>>> Anyone have any idea what to do? I can't save to Mongo from PySpark. A >>>> contrived example works, but a dataframe does not. >>>> >>>> I activate pymongo_spark and load a dataframe: >>>> >>>> import pymongo >>>> import pymongo_spark >>>> # Important: activate pymongo_spark. >>>> pymongo_spark.activate() >>>> >>>> on_time_dataframe = >>>> sqlContext.read.parquet('../data/on_time_performance.parquet') >>>> >>>> Then I try saving to MongoDB in two ways: >>>> >>>> >>>> on_time_dataframe.rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') >>>> >>>> on_time_dataframe.rdd.saveAsNewAPIHadoopFile( >>>> path='file://unused', >>>> outputFormatClass='com.mongodb.hadoop.MongoOutputFormat', >>>> keyClass='org.apache.hadoop.io.Text', >>>> valueClass='org.apache.hadoop.io.MapWritable', >>>> conf={"mongo.output.uri": >>>> "mongodb://localhost:27017/agile_data_science.on_time_performance"} >>>> ) >>>> >>>> >>>> But I always get this error: >>>> >>>> In [7]: >>>> on_time_rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') >>>> >>>> 16/03/28 18:04:06 INFO mapred.FileInputFormat: Total input paths to >>>> process : 1 >>>> >>>> 16/03/28 18:04:06 INFO spark.SparkContext: Starting job: runJob at >>>> PythonRDD.scala:393 >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Got job 2 (runJob at >>>> PythonRDD.scala:393) with 1 output partitions >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Final stage: ResultStage >>>> 2 (runJob at PythonRDD.scala:393) >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Parents of final stage: >>>> List() >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Missing parents: List() >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting ResultStage 2 >>>> (PythonRDD[13] at RDD at PythonRDD.scala:43), which has no missing parents >>>> >>>> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5 stored as >>>> values in memory (estimated size 19.3 KB, free 249.2 KB) >>>> >>>> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5_piece0 >>>> stored as bytes in memory (estimated size 9.7 KB, free 258.9 KB) >>>> >>>> 16/03/28 18:04:06 INFO storage.BlockManagerInfo: Added >>>> broadcast_5_piece0 in memory on localhost:59881 (size: 9.7 KB, free: 511.1 >>>> MB) >>>> >>>> 16/03/28 18:04:06 INFO spark.SparkContext: Created broadcast 5 from >>>> broadcast at DAGScheduler.scala:1006 >>>> >>>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting 1 missing >>>> tasks from ResultStage 2 (PythonRDD[13] at RDD at PythonRDD.scala:43) >>>> >>>> 16/03/28 18:04:06 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 >>>> with 1 tasks >>>> >>>> 16/03/28 18:04:06 INFO scheduler.TaskSetManager: Starting task 0.0 in >>>> stage 2.0 (TID 2, localhost, partition 0,PROCESS_LOCAL, 2666 bytes) >>>> >>>> 16/03/28 18:04:06 INFO executor.Executor: Running task 0.0 in stage 2.0 >>>> (TID 2) >>>> >>>> 16/03/28 18:04:06 INFO rdd.HadoopRDD: Input split: >>>> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777 >>>> >>>> 16/03/28 18:04:06 INFO compress.CodecPool: Got brand-new decompressor >>>> [.gz] >>>> >>>> 16/03/28 18:04:07 INFO python.PythonRunner: Times: total = 1310, boot = >>>> 1249, init = 58, finish = 3 >>>> >>>> 16/03/28 18:04:07 INFO executor.Executor: Finished task 0.0 in stage >>>> 2.0 (TID 2). 4475 bytes result sent to driver >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Finished task 0.0 in >>>> stage 2.0 (TID 2) in 1345 ms on localhost (1/1) >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet >>>> 2.0, whose tasks have all completed, from pool >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 2 (runJob at >>>> PythonRDD.scala:393) finished in 1.346 s >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 2 finished: runJob >>>> at PythonRDD.scala:393, took 1.361003 s >>>> >>>> 16/03/28 18:04:07 INFO spark.SparkContext: Starting job: take at >>>> SerDeUtil.scala:231 >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Got job 3 (take at >>>> SerDeUtil.scala:231) with 1 output partitions >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Final stage: ResultStage >>>> 3 (take at SerDeUtil.scala:231) >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Parents of final stage: >>>> List() >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Missing parents: List() >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting ResultStage 3 >>>> (MapPartitionsRDD[15] at mapPartitions at SerDeUtil.scala:146), which has >>>> no missing parents >>>> >>>> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6 stored as >>>> values in memory (estimated size 19.6 KB, free 278.4 KB) >>>> >>>> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6_piece0 >>>> stored as bytes in memory (estimated size 9.8 KB, free 288.2 KB) >>>> >>>> 16/03/28 18:04:07 INFO storage.BlockManagerInfo: Added >>>> broadcast_6_piece0 in memory on localhost:59881 (size: 9.8 KB, free: 511.1 >>>> MB) >>>> >>>> 16/03/28 18:04:07 INFO spark.SparkContext: Created broadcast 6 from >>>> broadcast at DAGScheduler.scala:1006 >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting 1 missing >>>> tasks from ResultStage 3 (MapPartitionsRDD[15] at mapPartitions at >>>> SerDeUtil.scala:146) >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 >>>> with 1 tasks >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Starting task 0.0 in >>>> stage 3.0 (TID 3, localhost, partition 0,PROCESS_LOCAL, 2666 bytes) >>>> >>>> 16/03/28 18:04:07 INFO executor.Executor: Running task 0.0 in stage 3.0 >>>> (TID 3) >>>> >>>> 16/03/28 18:04:07 INFO rdd.HadoopRDD: Input split: >>>> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777 >>>> >>>> 16/03/28 18:04:07 INFO compress.CodecPool: Got brand-new decompressor >>>> [.gz] >>>> >>>> 16/03/28 18:04:07 ERROR executor.Executor: Exception in task 0.0 in >>>> stage 3.0 (TID 3) >>>> >>>> net.razorvine.pickle.PickleException: expected zero arguments for >>>> construction of ClassDict (for pyspark.sql.types._create_row) >>>> >>>> at >>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>>> >>>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>>> >>>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>>> >>>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>>> >>>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>>> >>>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>>> >>>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>>> >>>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>>> >>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>>> >>>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>>> >>>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>>> >>>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>>> >>>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>>> >>>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>>> >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>> >>>> at java.lang.Thread.run(Thread.java:745) >>>> >>>> 16/03/28 18:04:07 WARN scheduler.TaskSetManager: Lost task 0.0 in stage >>>> 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: expected zero >>>> arguments for construction of ClassDict (for pyspark.sql.types._create_row) >>>> >>>> at >>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>>> >>>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>>> >>>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>>> >>>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>>> >>>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>>> >>>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>>> >>>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>>> >>>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>>> >>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>>> >>>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>>> >>>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>>> >>>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>>> >>>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>>> >>>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>>> >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>> >>>> at java.lang.Thread.run(Thread.java:745) >>>> >>>> >>>> 16/03/28 18:04:07 ERROR scheduler.TaskSetManager: Task 0 in stage 3.0 >>>> failed 1 times; aborting job >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet >>>> 3.0, whose tasks have all completed, from pool >>>> >>>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Cancelling stage 3 >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 3 (take at >>>> SerDeUtil.scala:231) failed in 0.117 s >>>> >>>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 3 failed: take at >>>> SerDeUtil.scala:231, took 0.134593 s >>>> >>>> >>>> --------------------------------------------------------------------------- >>>> >>>> Py4JJavaError Traceback (most recent call >>>> last) >>>> >>>> <ipython-input-7-d1f984f17e27> in <module>() >>>> >>>> ----> 1 on_time_rdd.saveToMongoDB >>>> ('mongodb://localhost:27017/agile_data_science.on_time_performance') >>>> >>>> >>>> /Users/rjurney/Software/Agile_Data_Code_2/lib/pymongo_spark.pyc in >>>> saveToMongoDB(self, connection_string, config) >>>> >>>> 104 keyConverter='com.mongodb.spark.pickle.NoopConverter', >>>> >>>> 105 valueConverter >>>> ='com.mongodb.spark.pickle.NoopConverter', >>>> >>>> --> 106 conf=conf) >>>> >>>> 107 >>>> >>>> 108 >>>> >>>> >>>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/rdd.pyc >>>> in saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass, >>>> valueClass, keyConverter, valueConverter, conf) >>>> >>>> 1372 >>>> outputFormatClass, >>>> >>>> 1373 keyClass >>>> , valueClass, >>>> >>>> -> 1374 >>>> keyConverter, valueConverter, jconf) >>>> >>>> 1375 >>>> >>>> 1376 def saveAsHadoopDataset(self, conf, keyConverter=None, >>>> valueConverter=None): >>>> >>>> >>>> >>>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py >>>> in __call__(self, *args) >>>> >>>> 811 answer = self.gateway_client.send_command(command) >>>> >>>> 812 return_value = get_return_value( >>>> >>>> --> 813 answer, self.gateway_client, self.target_id, >>>> self.name) >>>> >>>> 814 >>>> >>>> 815 for temp_arg in temp_args: >>>> >>>> >>>> >>>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/sql/utils.pyc >>>> in deco(*a, **kw) >>>> >>>> 43 def deco(*a, **kw): >>>> >>>> 44 try: >>>> >>>> ---> 45 return f(*a, **kw) >>>> >>>> 46 except py4j.protocol.Py4JJavaError as e: >>>> >>>> 47 s = e.java_exception.toString() >>>> >>>> >>>> >>>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py >>>> in get_return_value(answer, gateway_client, target_id, name) >>>> >>>> 306 raise Py4JJavaError( >>>> >>>> 307 "An error occurred while calling >>>> {0}{1}{2}.\n". >>>> >>>> --> 308 format(target_id, ".", name), value) >>>> >>>> 309 else: >>>> >>>> 310 raise Py4JError( >>>> >>>> >>>> Py4JJavaError: An error occurred while calling >>>> z:org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile. >>>> >>>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>>> Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in >>>> stage 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: >>>> expected zero arguments for construction of ClassDict (for >>>> pyspark.sql.types._create_row) >>>> >>>> at >>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>>> >>>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>>> >>>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>>> >>>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>>> >>>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>>> >>>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>>> >>>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>>> >>>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>>> >>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>>> >>>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>>> >>>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>>> >>>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>>> >>>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>>> >>>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>>> >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>> >>>> at java.lang.Thread.run(Thread.java:745) >>>> >>>> >>>> Driver stacktrace: >>>> >>>> at org.apache.spark.scheduler.DAGScheduler.org >>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) >>>> >>>> at >>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>> >>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) >>>> >>>> at scala.Option.foreach(Option.scala:236) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) >>>> >>>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>>> >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) >>>> >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) >>>> >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) >>>> >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) >>>> >>>> at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) >>>> >>>> at >>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) >>>> >>>> at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) >>>> >>>> at org.apache.spark.rdd.RDD.take(RDD.scala:1302) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$.pythonToPairRDD(SerDeUtil.scala:231) >>>> >>>> at >>>> org.apache.spark.api.python.PythonRDD$.saveAsNewAPIHadoopFile(PythonRDD.scala:775) >>>> >>>> at >>>> org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile(PythonRDD.scala) >>>> >>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>>> >>>> at >>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >>>> >>>> at >>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>>> >>>> at java.lang.reflect.Method.invoke(Method.java:497) >>>> >>>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) >>>> >>>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) >>>> >>>> at py4j.Gateway.invoke(Gateway.java:259) >>>> >>>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) >>>> >>>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>>> >>>> at py4j.GatewayConnection.run(GatewayConnection.java:209) >>>> >>>> at java.lang.Thread.run(Thread.java:745) >>>> >>>> Caused by: net.razorvine.pickle.PickleException: expected zero >>>> arguments for construction of ClassDict (for pyspark.sql.types._create_row) >>>> >>>> at >>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>>> >>>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>>> >>>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>>> >>>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>>> >>>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>>> >>>> at >>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>>> >>>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>>> >>>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>>> >>>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>>> >>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>>> >>>> at >>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>>> >>>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>>> >>>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>>> >>>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>>> >>>> at >>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>>> >>>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at >>>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>>> >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>>> >>>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>>> >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>> >>>> at >>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>> >>>> ... 1 more >>>> >>>> >>>> -- >>>> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io >>>> >>> >>> >>> >>> -- >>> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io >>> >> >> > > > -- > Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io > -- Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io