Ted, I am using the .rdd method, see above, but for some reason these RDDs can't be saved to MongoDB or ElasticSearch.
I think this is a bug in PySpark/DataFrame. I can't think of another explanation... somehow DataFrame.rdd RDDs are not able to be stored to an arbitrary Hadoop OutputFormat. When I do this: on_time_lines = sc.textFile("../data/On_Time_On_Time_Performance_2015.jsonl.gz") on_time_performance = on_time_lines.map(lambda x: json.loads(x)) on_time_performance.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') It works. Same data, but loaded as textFile instead of DataFrame (via json/parquet dataframe loading). It is the DataFrame.rdd bit that is broken. I will file a JIRA. Does anyone know a workaround? On Mon, Mar 28, 2016 at 7:28 PM, Ted Yu <yuzhih...@gmail.com> wrote: > See this method: > > lazy val rdd: RDD[T] = { > > On Mon, Mar 28, 2016 at 6:30 PM, Russell Jurney <russell.jur...@gmail.com> > wrote: > >> Ok, I'm also unable to save to Elasticsearch using a dataframe's RDD. >> This seems related to DataFrames. Is there a way to convert a DataFrame's >> RDD to a 'normal' RDD? >> >> >> On Mon, Mar 28, 2016 at 6:20 PM, Russell Jurney <russell.jur...@gmail.com >> > wrote: >> >>> I filed a JIRA <https://jira.mongodb.org/browse/HADOOP-276> in the >>> mongo-hadoop project, but I'm curious if anyone else has seen this issue. >>> Anyone have any idea what to do? I can't save to Mongo from PySpark. A >>> contrived example works, but a dataframe does not. >>> >>> I activate pymongo_spark and load a dataframe: >>> >>> import pymongo >>> import pymongo_spark >>> # Important: activate pymongo_spark. >>> pymongo_spark.activate() >>> >>> on_time_dataframe = >>> sqlContext.read.parquet('../data/on_time_performance.parquet') >>> >>> Then I try saving to MongoDB in two ways: >>> >>> >>> on_time_dataframe.rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') >>> >>> on_time_dataframe.rdd.saveAsNewAPIHadoopFile( >>> path='file://unused', >>> outputFormatClass='com.mongodb.hadoop.MongoOutputFormat', >>> keyClass='org.apache.hadoop.io.Text', >>> valueClass='org.apache.hadoop.io.MapWritable', >>> conf={"mongo.output.uri": >>> "mongodb://localhost:27017/agile_data_science.on_time_performance"} >>> ) >>> >>> >>> But I always get this error: >>> >>> In [7]: >>> on_time_rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance') >>> >>> 16/03/28 18:04:06 INFO mapred.FileInputFormat: Total input paths to >>> process : 1 >>> >>> 16/03/28 18:04:06 INFO spark.SparkContext: Starting job: runJob at >>> PythonRDD.scala:393 >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Got job 2 (runJob at >>> PythonRDD.scala:393) with 1 output partitions >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Final stage: ResultStage >>> 2 (runJob at PythonRDD.scala:393) >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Parents of final stage: >>> List() >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Missing parents: List() >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting ResultStage 2 >>> (PythonRDD[13] at RDD at PythonRDD.scala:43), which has no missing parents >>> >>> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5 stored as >>> values in memory (estimated size 19.3 KB, free 249.2 KB) >>> >>> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5_piece0 >>> stored as bytes in memory (estimated size 9.7 KB, free 258.9 KB) >>> >>> 16/03/28 18:04:06 INFO storage.BlockManagerInfo: Added >>> broadcast_5_piece0 in memory on localhost:59881 (size: 9.7 KB, free: 511.1 >>> MB) >>> >>> 16/03/28 18:04:06 INFO spark.SparkContext: Created broadcast 5 from >>> broadcast at DAGScheduler.scala:1006 >>> >>> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting 1 missing >>> tasks from ResultStage 2 (PythonRDD[13] at RDD at PythonRDD.scala:43) >>> >>> 16/03/28 18:04:06 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 >>> with 1 tasks >>> >>> 16/03/28 18:04:06 INFO scheduler.TaskSetManager: Starting task 0.0 in >>> stage 2.0 (TID 2, localhost, partition 0,PROCESS_LOCAL, 2666 bytes) >>> >>> 16/03/28 18:04:06 INFO executor.Executor: Running task 0.0 in stage 2.0 >>> (TID 2) >>> >>> 16/03/28 18:04:06 INFO rdd.HadoopRDD: Input split: >>> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777 >>> >>> 16/03/28 18:04:06 INFO compress.CodecPool: Got brand-new decompressor >>> [.gz] >>> >>> 16/03/28 18:04:07 INFO python.PythonRunner: Times: total = 1310, boot = >>> 1249, init = 58, finish = 3 >>> >>> 16/03/28 18:04:07 INFO executor.Executor: Finished task 0.0 in stage 2.0 >>> (TID 2). 4475 bytes result sent to driver >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Finished task 0.0 in >>> stage 2.0 (TID 2) in 1345 ms on localhost (1/1) >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, >>> whose tasks have all completed, from pool >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 2 (runJob at >>> PythonRDD.scala:393) finished in 1.346 s >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 2 finished: runJob at >>> PythonRDD.scala:393, took 1.361003 s >>> >>> 16/03/28 18:04:07 INFO spark.SparkContext: Starting job: take at >>> SerDeUtil.scala:231 >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Got job 3 (take at >>> SerDeUtil.scala:231) with 1 output partitions >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Final stage: ResultStage >>> 3 (take at SerDeUtil.scala:231) >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Parents of final stage: >>> List() >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Missing parents: List() >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting ResultStage 3 >>> (MapPartitionsRDD[15] at mapPartitions at SerDeUtil.scala:146), which has >>> no missing parents >>> >>> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6 stored as >>> values in memory (estimated size 19.6 KB, free 278.4 KB) >>> >>> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6_piece0 >>> stored as bytes in memory (estimated size 9.8 KB, free 288.2 KB) >>> >>> 16/03/28 18:04:07 INFO storage.BlockManagerInfo: Added >>> broadcast_6_piece0 in memory on localhost:59881 (size: 9.8 KB, free: 511.1 >>> MB) >>> >>> 16/03/28 18:04:07 INFO spark.SparkContext: Created broadcast 6 from >>> broadcast at DAGScheduler.scala:1006 >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting 1 missing >>> tasks from ResultStage 3 (MapPartitionsRDD[15] at mapPartitions at >>> SerDeUtil.scala:146) >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 >>> with 1 tasks >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Starting task 0.0 in >>> stage 3.0 (TID 3, localhost, partition 0,PROCESS_LOCAL, 2666 bytes) >>> >>> 16/03/28 18:04:07 INFO executor.Executor: Running task 0.0 in stage 3.0 >>> (TID 3) >>> >>> 16/03/28 18:04:07 INFO rdd.HadoopRDD: Input split: >>> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777 >>> >>> 16/03/28 18:04:07 INFO compress.CodecPool: Got brand-new decompressor >>> [.gz] >>> >>> 16/03/28 18:04:07 ERROR executor.Executor: Exception in task 0.0 in >>> stage 3.0 (TID 3) >>> >>> net.razorvine.pickle.PickleException: expected zero arguments for >>> construction of ClassDict (for pyspark.sql.types._create_row) >>> >>> at >>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>> >>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>> >>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>> >>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>> >>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>> >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>> >>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>> >>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>> >>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>> >>> at >>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>> >>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>> >>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>> >>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>> >>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> >>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>> >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> 16/03/28 18:04:07 WARN scheduler.TaskSetManager: Lost task 0.0 in stage >>> 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: expected zero >>> arguments for construction of ClassDict (for pyspark.sql.types._create_row) >>> >>> at >>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>> >>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>> >>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>> >>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>> >>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>> >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>> >>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>> >>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>> >>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>> >>> at >>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>> >>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>> >>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>> >>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>> >>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> >>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>> >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> >>> 16/03/28 18:04:07 ERROR scheduler.TaskSetManager: Task 0 in stage 3.0 >>> failed 1 times; aborting job >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, >>> whose tasks have all completed, from pool >>> >>> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Cancelling stage 3 >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 3 (take at >>> SerDeUtil.scala:231) failed in 0.117 s >>> >>> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 3 failed: take at >>> SerDeUtil.scala:231, took 0.134593 s >>> >>> >>> --------------------------------------------------------------------------- >>> >>> Py4JJavaError Traceback (most recent call >>> last) >>> >>> <ipython-input-7-d1f984f17e27> in <module>() >>> >>> ----> 1 on_time_rdd.saveToMongoDB >>> ('mongodb://localhost:27017/agile_data_science.on_time_performance') >>> >>> >>> /Users/rjurney/Software/Agile_Data_Code_2/lib/pymongo_spark.pyc in >>> saveToMongoDB(self, connection_string, config) >>> >>> 104 keyConverter='com.mongodb.spark.pickle.NoopConverter', >>> >>> 105 valueConverter='com.mongodb.spark.pickle.NoopConverter', >>> >>> --> 106 conf=conf) >>> >>> 107 >>> >>> 108 >>> >>> >>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/rdd.pyc >>> in saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass, >>> valueClass, keyConverter, valueConverter, conf) >>> >>> 1372 >>> outputFormatClass, >>> >>> 1373 keyClass, >>> valueClass, >>> >>> -> 1374 >>> keyConverter, valueConverter, jconf) >>> >>> 1375 >>> >>> 1376 def saveAsHadoopDataset(self, conf, keyConverter=None, >>> valueConverter=None): >>> >>> >>> >>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py >>> in __call__(self, *args) >>> >>> 811 answer = self.gateway_client.send_command(command) >>> >>> 812 return_value = get_return_value( >>> >>> --> 813 answer, self.gateway_client, self.target_id, >>> self.name) >>> >>> 814 >>> >>> 815 for temp_arg in temp_args: >>> >>> >>> >>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/sql/utils.pyc >>> in deco(*a, **kw) >>> >>> 43 def deco(*a, **kw): >>> >>> 44 try: >>> >>> ---> 45 return f(*a, **kw) >>> >>> 46 except py4j.protocol.Py4JJavaError as e: >>> >>> 47 s = e.java_exception.toString() >>> >>> >>> >>> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py >>> in get_return_value(answer, gateway_client, target_id, name) >>> >>> 306 raise Py4JJavaError( >>> >>> 307 "An error occurred while calling >>> {0}{1}{2}.\n". >>> >>> --> 308 format(target_id, ".", name), value) >>> >>> 309 else: >>> >>> 310 raise Py4JError( >>> >>> >>> Py4JJavaError: An error occurred while calling >>> z:org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile. >>> >>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>> Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in >>> stage 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: >>> expected zero arguments for construction of ClassDict (for >>> pyspark.sql.types._create_row) >>> >>> at >>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>> >>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>> >>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>> >>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>> >>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>> >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>> >>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>> >>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>> >>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>> >>> at >>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>> >>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>> >>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>> >>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>> >>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> >>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>> >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> >>> Driver stacktrace: >>> >>> at org.apache.spark.scheduler.DAGScheduler.org >>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) >>> >>> at >>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>> >>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) >>> >>> at scala.Option.foreach(Option.scala:236) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) >>> >>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>> >>> at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) >>> >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) >>> >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) >>> >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) >>> >>> at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) >>> >>> at >>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) >>> >>> at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) >>> >>> at org.apache.spark.rdd.RDD.take(RDD.scala:1302) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$.pythonToPairRDD(SerDeUtil.scala:231) >>> >>> at >>> org.apache.spark.api.python.PythonRDD$.saveAsNewAPIHadoopFile(PythonRDD.scala:775) >>> >>> at >>> org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile(PythonRDD.scala) >>> >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >>> >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> >>> at java.lang.reflect.Method.invoke(Method.java:497) >>> >>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) >>> >>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) >>> >>> at py4j.Gateway.invoke(Gateway.java:259) >>> >>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) >>> >>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>> >>> at py4j.GatewayConnection.run(GatewayConnection.java:209) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> Caused by: net.razorvine.pickle.PickleException: expected zero arguments >>> for construction of ClassDict (for pyspark.sql.types._create_row) >>> >>> at >>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) >>> >>> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) >>> >>> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) >>> >>> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) >>> >>> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150) >>> >>> at >>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149) >>> >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>> >>> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) >>> >>> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >>> >>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >>> >>> at >>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >>> >>> at >>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >>> >>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >>> >>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >>> >>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >>> >>> at >>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >>> >>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at >>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) >>> >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> >>> at org.apache.spark.scheduler.Task.run(Task.scala:89) >>> >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> ... 1 more >>> >>> >>> -- >>> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io >>> >> >> >> >> -- >> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io >> > > -- Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io