Ok, I'm also unable to save to Elasticsearch using a dataframe's RDD. This
seems related to DataFrames. Is there a way to convert a DataFrame's RDD to
a 'normal' RDD?


On Mon, Mar 28, 2016 at 6:20 PM, Russell Jurney <russell.jur...@gmail.com>
wrote:

> I filed a JIRA <https://jira.mongodb.org/browse/HADOOP-276> in the
> mongo-hadoop project, but I'm curious if anyone else has seen this issue.
> Anyone have any idea what to do? I can't save to Mongo from PySpark. A
> contrived example works, but a dataframe does not.
>
> I activate pymongo_spark and load a dataframe:
>
> import pymongo
> import pymongo_spark
> # Important: activate pymongo_spark.
> pymongo_spark.activate()
>
> on_time_dataframe =
> sqlContext.read.parquet('../data/on_time_performance.parquet')
>
> Then I try saving to MongoDB in two ways:
>
>
> on_time_dataframe.rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance')
>
> on_time_dataframe.rdd.saveAsNewAPIHadoopFile(
>   path='file://unused',
>   outputFormatClass='com.mongodb.hadoop.MongoOutputFormat',
>   keyClass='org.apache.hadoop.io.Text',
>   valueClass='org.apache.hadoop.io.MapWritable',
>   conf={"mongo.output.uri":
> "mongodb://localhost:27017/agile_data_science.on_time_performance"}
> )
>
>
> But I always get this error:
>
> In [7]:
> on_time_rdd.saveToMongoDB('mongodb://localhost:27017/agile_data_science.on_time_performance')
>
> 16/03/28 18:04:06 INFO mapred.FileInputFormat: Total input paths to
> process : 1
>
> 16/03/28 18:04:06 INFO spark.SparkContext: Starting job: runJob at
> PythonRDD.scala:393
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Got job 2 (runJob at
> PythonRDD.scala:393) with 1 output partitions
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Final stage: ResultStage 2
> (runJob at PythonRDD.scala:393)
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Parents of final stage:
> List()
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Missing parents: List()
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting ResultStage 2
> (PythonRDD[13] at RDD at PythonRDD.scala:43), which has no missing parents
>
> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5 stored as
> values in memory (estimated size 19.3 KB, free 249.2 KB)
>
> 16/03/28 18:04:06 INFO storage.MemoryStore: Block broadcast_5_piece0
> stored as bytes in memory (estimated size 9.7 KB, free 258.9 KB)
>
> 16/03/28 18:04:06 INFO storage.BlockManagerInfo: Added broadcast_5_piece0
> in memory on localhost:59881 (size: 9.7 KB, free: 511.1 MB)
>
> 16/03/28 18:04:06 INFO spark.SparkContext: Created broadcast 5 from
> broadcast at DAGScheduler.scala:1006
>
> 16/03/28 18:04:06 INFO scheduler.DAGScheduler: Submitting 1 missing tasks
> from ResultStage 2 (PythonRDD[13] at RDD at PythonRDD.scala:43)
>
> 16/03/28 18:04:06 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0
> with 1 tasks
>
> 16/03/28 18:04:06 INFO scheduler.TaskSetManager: Starting task 0.0 in
> stage 2.0 (TID 2, localhost, partition 0,PROCESS_LOCAL, 2666 bytes)
>
> 16/03/28 18:04:06 INFO executor.Executor: Running task 0.0 in stage 2.0
> (TID 2)
>
> 16/03/28 18:04:06 INFO rdd.HadoopRDD: Input split:
> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777
>
> 16/03/28 18:04:06 INFO compress.CodecPool: Got brand-new decompressor [.gz]
>
> 16/03/28 18:04:07 INFO python.PythonRunner: Times: total = 1310, boot =
> 1249, init = 58, finish = 3
>
> 16/03/28 18:04:07 INFO executor.Executor: Finished task 0.0 in stage 2.0
> (TID 2). 4475 bytes result sent to driver
>
> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Finished task 0.0 in
> stage 2.0 (TID 2) in 1345 ms on localhost (1/1)
>
> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0,
> whose tasks have all completed, from pool
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 2 (runJob at
> PythonRDD.scala:393) finished in 1.346 s
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 2 finished: runJob at
> PythonRDD.scala:393, took 1.361003 s
>
> 16/03/28 18:04:07 INFO spark.SparkContext: Starting job: take at
> SerDeUtil.scala:231
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Got job 3 (take at
> SerDeUtil.scala:231) with 1 output partitions
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Final stage: ResultStage 3
> (take at SerDeUtil.scala:231)
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Parents of final stage:
> List()
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Missing parents: List()
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting ResultStage 3
> (MapPartitionsRDD[15] at mapPartitions at SerDeUtil.scala:146), which has
> no missing parents
>
> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6 stored as
> values in memory (estimated size 19.6 KB, free 278.4 KB)
>
> 16/03/28 18:04:07 INFO storage.MemoryStore: Block broadcast_6_piece0
> stored as bytes in memory (estimated size 9.8 KB, free 288.2 KB)
>
> 16/03/28 18:04:07 INFO storage.BlockManagerInfo: Added broadcast_6_piece0
> in memory on localhost:59881 (size: 9.8 KB, free: 511.1 MB)
>
> 16/03/28 18:04:07 INFO spark.SparkContext: Created broadcast 6 from
> broadcast at DAGScheduler.scala:1006
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Submitting 1 missing tasks
> from ResultStage 3 (MapPartitionsRDD[15] at mapPartitions at
> SerDeUtil.scala:146)
>
> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0
> with 1 tasks
>
> 16/03/28 18:04:07 INFO scheduler.TaskSetManager: Starting task 0.0 in
> stage 3.0 (TID 3, localhost, partition 0,PROCESS_LOCAL, 2666 bytes)
>
> 16/03/28 18:04:07 INFO executor.Executor: Running task 0.0 in stage 3.0
> (TID 3)
>
> 16/03/28 18:04:07 INFO rdd.HadoopRDD: Input split:
> file:/Users/rjurney/Software/Agile_Data_Code_2/data/On_Time_On_Time_Performance_2015.csv.gz:0+312456777
>
> 16/03/28 18:04:07 INFO compress.CodecPool: Got brand-new decompressor [.gz]
>
> 16/03/28 18:04:07 ERROR executor.Executor: Exception in task 0.0 in stage
> 3.0 (TID 3)
>
> net.razorvine.pickle.PickleException: expected zero arguments for
> construction of ClassDict (for pyspark.sql.types._create_row)
>
> at
> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>
> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>
> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>
> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>
> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
>
> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
>
> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
>
> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>
> at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>
> at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>
> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>
> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>
> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>
> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
>
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>
> at java.lang.Thread.run(Thread.java:745)
>
> 16/03/28 18:04:07 WARN scheduler.TaskSetManager: Lost task 0.0 in stage
> 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: expected zero
> arguments for construction of ClassDict (for pyspark.sql.types._create_row)
>
> at
> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>
> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>
> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>
> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>
> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
>
> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
>
> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
>
> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>
> at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>
> at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>
> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>
> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>
> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>
> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
>
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>
> at java.lang.Thread.run(Thread.java:745)
>
>
> 16/03/28 18:04:07 ERROR scheduler.TaskSetManager: Task 0 in stage 3.0
> failed 1 times; aborting job
>
> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0,
> whose tasks have all completed, from pool
>
> 16/03/28 18:04:07 INFO scheduler.TaskSchedulerImpl: Cancelling stage 3
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: ResultStage 3 (take at
> SerDeUtil.scala:231) failed in 0.117 s
>
> 16/03/28 18:04:07 INFO scheduler.DAGScheduler: Job 3 failed: take at
> SerDeUtil.scala:231, took 0.134593 s
>
> ---------------------------------------------------------------------------
>
> Py4JJavaError                             Traceback (most recent call
> last)
>
> <ipython-input-7-d1f984f17e27> in <module>()
>
> ----> 1 on_time_rdd.saveToMongoDB
> ('mongodb://localhost:27017/agile_data_science.on_time_performance')
>
>
> /Users/rjurney/Software/Agile_Data_Code_2/lib/pymongo_spark.pyc in
> saveToMongoDB(self, connection_string, config)
>
>     104         keyConverter='com.mongodb.spark.pickle.NoopConverter',
>
>     105         valueConverter='com.mongodb.spark.pickle.NoopConverter',
>
> --> 106         conf=conf)
>
>     107
>
>     108
>
>
> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/rdd.pyc in
> saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass,
> valueClass, keyConverter, valueConverter, conf)
>
>    1372
> outputFormatClass,
>
>    1373                                                        keyClass,
> valueClass,
>
> -> 1374
> keyConverter, valueConverter, jconf)
>
>    1375
>
>    1376     def saveAsHadoopDataset(self, conf, keyConverter=None,
> valueConverter=None):
>
>
>
> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py
> in __call__(self, *args)
>
>     811         answer = self.gateway_client.send_command(command)
>
>     812         return_value = get_return_value(
>
> --> 813             answer, self.gateway_client, self.target_id, self.name
> )
>
>     814
>
>     815         for temp_arg in temp_args:
>
>
>
> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/sql/utils.pyc
> in deco(*a, **kw)
>
>      43     def deco(*a, **kw):
>
>      44         try:
>
> ---> 45             return f(*a, **kw)
>
>      46         except py4j.protocol.Py4JJavaError as e:
>
>      47             s = e.java_exception.toString()
>
>
>
> /Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py
> in get_return_value(answer, gateway_client, target_id, name)
>
>     306                 raise Py4JJavaError(
>
>     307                     "An error occurred while calling
> {0}{1}{2}.\n".
>
> --> 308                     format(target_id, ".", name), value)
>
>     309             else:
>
>     310                 raise Py4JError(
>
>
> Py4JJavaError: An error occurred while calling
> z:org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile.
>
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task
> 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage
> 3.0 (TID 3, localhost): net.razorvine.pickle.PickleException: expected zero
> arguments for construction of ClassDict (for pyspark.sql.types._create_row)
>
> at
> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>
> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>
> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>
> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>
> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
>
> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
>
> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
>
> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>
> at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>
> at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>
> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>
> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>
> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>
> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
>
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>
> at java.lang.Thread.run(Thread.java:745)
>
>
> Driver stacktrace:
>
> at org.apache.spark.scheduler.DAGScheduler.org
> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
>
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>
> at scala.Option.foreach(Option.scala:236)
>
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
>
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
>
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
>
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
>
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>
> at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
>
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
>
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
>
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
>
> at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1328)
>
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
>
> at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
>
> at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
>
> at
> org.apache.spark.api.python.SerDeUtil$.pythonToPairRDD(SerDeUtil.scala:231)
>
> at
> org.apache.spark.api.python.PythonRDD$.saveAsNewAPIHadoopFile(PythonRDD.scala:775)
>
> at
> org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile(PythonRDD.scala)
>
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>
> at java.lang.reflect.Method.invoke(Method.java:497)
>
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
>
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
>
> at py4j.Gateway.invoke(Gateway.java:259)
>
> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
>
> at py4j.commands.CallCommand.execute(CallCommand.java:79)
>
> at py4j.GatewayConnection.run(GatewayConnection.java:209)
>
> at java.lang.Thread.run(Thread.java:745)
>
> Caused by: net.razorvine.pickle.PickleException: expected zero arguments
> for construction of ClassDict (for pyspark.sql.types._create_row)
>
> at
> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>
> at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>
> at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>
> at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>
> at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
>
> at
> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
>
> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
>
> at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
>
> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>
> at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>
> at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>
> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>
> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>
> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>
> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
>
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>
> ... 1 more
>
>
> --
> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io
>



-- 
Russell Jurney twitter.com/rjurney russell.jur...@gmail.com relato.io

Reply via email to