Thanks a lot Aljoshca, this was a perfect answer to my vague question. On 09-Jan-2017 4:52 pm, "Aljoscha Krettek" <aljos...@apache.org> wrote:
Hi, to clarify what Kostas said. A "single window" in this case is a window for a given key and time period so the window for "key1" in time t1 to t2 can be processed on a different machine from the window for "key2" in time t1 to t2. Cheers, Aljoscha On Thu, 5 Jan 2017 at 21:56 Kostas Kloudas <k.klou...@data-artisans.com> wrote: > Hi Abdul, > > Every window is handled by a single machine, if this is what you mean by > “partition”. > > Kostas > > On Jan 5, 2017, at 9:21 PM, Abdul Salam Shaikh <abd.salam.sha...@gmail.com> > wrote: > > Thanks Fabian and Kostas, > > How can I put to use the power of flink as a distributed system ? > > In cases where we have multiple windows, is one single window handled by > one partition entirely or is it spread across several partitions ? > > On Thu, Jan 5, 2017 at 12:25 PM, Fabian Hueske <fhue...@gmail.com> wrote: > > Flink is a distributed system and does not preserve order across > partitions. > The number prefix (e.g., 1>, 2>, ...) tells you the parallel instance of > the printing operator. > > You can set the parallelism to 1 to have the stream in order. > > Fabian > > 2017-01-05 12:16 GMT+01:00 Kostas Kloudas <k.klou...@data-artisans.com>: > > Hi Abdul, > > Flink provides no ordering guarantees on the elements within a window. > The only “order” it guarantees is that the results referring to window-1 > are > going to be emitted before those of window-2 (assuming that window-1 > precedes window-2). > > Thanks, > Kostas > > On Jan 5, 2017, at 11:57 AM, Abdul Salam Shaikh < > abd.salam.sha...@gmail.com> wrote: > > Hi, > > I am using a JSON file as the source for the streaming (in the ascending > order of the field Umlaufsekunde)which has events as follows: > > {"event":[{"*Umlaufsekunde*":115}]} > {"event":[{"*Umlaufsekunde*":135}]} > {"event":[{"*Umlaufsekunde*":135}]} > {"event":[{"*Umlaufsekunde*":145}]} > {"event":[{"*Umlaufsekunde*":155}]} > {"event":[{"*Umlaufsekunde*":155}]} > {"event":[{"*Umlaufsekunde*":185}]} > {"event":[{"*Umlaufsekunde*":195}]} > {"event":[{"*Umlaufsekunde*":195}]} > {"event":[{"*Umlaufsekunde*":205}]} > {"event":[{"*Umlaufsekunde*":245}]} > > However, when I try to print the stream, it is unordered as given below: > 1> (*115*,null,1483517983252,1190) -- The first value indicating > Umlaufsekunde > 2> (135,null,1483517984877,1190) > 2> (155,null,1483517986861,1190) > 4> (145,null,1483517985752,1190) > 3> (135,null,1483517985424,1190) > 4> (195,null,1483517990736,1190) > 4> (255,null,1483517997424,1190) > 2> (205,null,1483517991518,1190) > 2> (275,null,1483517999330,1190) > 2> (385,null,1483518865371,1190) > 2> (395,null,1483518866840,1190) > 1> (155,null,1483517986533,1190) > 4> (285,null,1483518000189,1190) > 4> (395,null,1483518866231,1190) > > I have also tried using the Timestamps and Watermarks but no luck as > follows: > > public class TimestampExtractor implements > AssignerWithPeriodicWatermarks<Tuple5<String, > Long, List<Lane>, Long, Long>>{ > > private long currentMaxTimestamp; > > @Override > public Watermark getCurrentWatermark() { > return new Watermark(currentMaxTimestamp); > } > > @Override > public long extractTimestamp(Tuple5<String, Long> element, long > previousElementTimestamp) { > long timestamp = element.getField(1); > currentMaxTimestamp = timestamp; > return currentMaxTimestamp; > } > > } > > Could anyone suggest how do I handle this problem for the arrival of > events in order ? > > Thanks! > > > > > > > > -- > Thanks & Regards, > > *Abdul Salam Shaikh* > > >