Hi Abdul,

Every window is handled by a single machine, if this is what you mean by 
“partition”.

Kostas

> On Jan 5, 2017, at 9:21 PM, Abdul Salam Shaikh <abd.salam.sha...@gmail.com> 
> wrote:
> 
> Thanks Fabian and Kostas, 
> 
> How can I put to use the power of flink as a distributed system ? 
> 
> In cases where we have multiple windows, is one single window handled by one 
> partition entirely or is it spread across several partitions ? 
> 
> On Thu, Jan 5, 2017 at 12:25 PM, Fabian Hueske <fhue...@gmail.com 
> <mailto:fhue...@gmail.com>> wrote:
> Flink is a distributed system and does not preserve order across partitions.
> The number prefix (e.g., 1>, 2>, ...) tells you the parallel instance of the 
> printing operator.
> 
> You can set the parallelism to 1 to have the stream in order.
> 
> Fabian
> 
> 2017-01-05 12:16 GMT+01:00 Kostas Kloudas <k.klou...@data-artisans.com 
> <mailto:k.klou...@data-artisans.com>>:
> Hi Abdul,
> 
> Flink provides no ordering guarantees on the elements within a window.
> The only “order” it guarantees is that the results referring to window-1 are
> going to be emitted before those of window-2 (assuming that window-1 precedes 
> window-2).
> 
> Thanks,
> Kostas
> 
>> On Jan 5, 2017, at 11:57 AM, Abdul Salam Shaikh <abd.salam.sha...@gmail.com 
>> <mailto:abd.salam.sha...@gmail.com>> wrote:
>> 
>> Hi, 
>> 
>> I am using a JSON file as the source for the streaming (in the ascending 
>> order of the field Umlaufsekunde)which has events as follows: 
>> 
>> {"event":[{"Umlaufsekunde":115}]}
>> {"event":[{"Umlaufsekunde":135}]}
>> {"event":[{"Umlaufsekunde":135}]}
>> {"event":[{"Umlaufsekunde":145}]}
>> {"event":[{"Umlaufsekunde":155}]}
>> {"event":[{"Umlaufsekunde":155}]}
>> {"event":[{"Umlaufsekunde":185}]}
>> {"event":[{"Umlaufsekunde":195}]}
>> {"event":[{"Umlaufsekunde":195}]}
>> {"event":[{"Umlaufsekunde":205}]}
>> {"event":[{"Umlaufsekunde":245}]}
>> 
>> However, when I try to print the stream, it is unordered as given below: 
>> 1> (115,null,1483517983252,1190)  -- The first value indicating Umlaufsekunde
>> 2> (135,null,1483517984877,1190)
>> 2> (155,null,1483517986861,1190)
>> 4> (145,null,1483517985752,1190)
>> 3> (135,null,1483517985424,1190)
>> 4> (195,null,1483517990736,1190)
>> 4> (255,null,1483517997424,1190)
>> 2> (205,null,1483517991518,1190)
>> 2> (275,null,1483517999330,1190)
>> 2> (385,null,1483518865371,1190)
>> 2> (395,null,1483518866840,1190)
>> 1> (155,null,1483517986533,1190)
>> 4> (285,null,1483518000189,1190)
>> 4> (395,null,1483518866231,1190)
>> 
>> I have also tried using the Timestamps and Watermarks but no luck as 
>> follows: 
>> 
>> public class TimestampExtractor implements 
>> AssignerWithPeriodicWatermarks<Tuple5<String, Long, List<Lane>, Long, Long>>{
>>     
>>     private long currentMaxTimestamp;
>> 
>>     @Override
>>     public Watermark getCurrentWatermark() {
>>         return new Watermark(currentMaxTimestamp);   
>>     }
>> 
>>     @Override
>>     public long extractTimestamp(Tuple5<String, Long> element, long 
>> previousElementTimestamp) {
>>         long timestamp = element.getField(1);
>>         currentMaxTimestamp = timestamp;
>>         return currentMaxTimestamp;
>>   }
>>     
>> }
>> 
>> Could anyone suggest how do I handle this problem for the arrival of events 
>> in order ? 
>> 
>> ​Thanks!​
>> 
>> 
> 
> 
> 
> 
> 
> -- 
> Thanks & Regards,
> 
> Abdul Salam Shaikh
> 

Reply via email to