Thanks Fabian and Kostas,

How can I put to use the power of flink as a distributed system ?

In cases where we have multiple windows, is one single window handled by
one partition entirely or is it spread across several partitions ?

On Thu, Jan 5, 2017 at 12:25 PM, Fabian Hueske <fhue...@gmail.com> wrote:

> Flink is a distributed system and does not preserve order across
> partitions.
> The number prefix (e.g., 1>, 2>, ...) tells you the parallel instance of
> the printing operator.
>
> You can set the parallelism to 1 to have the stream in order.
>
> Fabian
>
> 2017-01-05 12:16 GMT+01:00 Kostas Kloudas <k.klou...@data-artisans.com>:
>
>> Hi Abdul,
>>
>> Flink provides no ordering guarantees on the elements within a window.
>> The only “order” it guarantees is that the results referring to window-1
>> are
>> going to be emitted before those of window-2 (assuming that window-1
>> precedes window-2).
>>
>> Thanks,
>> Kostas
>>
>> On Jan 5, 2017, at 11:57 AM, Abdul Salam Shaikh <
>> abd.salam.sha...@gmail.com> wrote:
>>
>> Hi,
>>
>> I am using a JSON file as the source for the streaming (in the ascending
>> order of the field Umlaufsekunde)which has events as follows:
>>
>> {"event":[{"*Umlaufsekunde*":115}]}
>> {"event":[{"*Umlaufsekunde*":135}]}
>> {"event":[{"*Umlaufsekunde*":135}]}
>> {"event":[{"*Umlaufsekunde*":145}]}
>> {"event":[{"*Umlaufsekunde*":155}]}
>> {"event":[{"*Umlaufsekunde*":155}]}
>> {"event":[{"*Umlaufsekunde*":185}]}
>> {"event":[{"*Umlaufsekunde*":195}]}
>> {"event":[{"*Umlaufsekunde*":195}]}
>> {"event":[{"*Umlaufsekunde*":205}]}
>> {"event":[{"*Umlaufsekunde*":245}]}
>>
>> However, when I try to print the stream, it is unordered as given below:
>> 1> (*115*,null,1483517983252,1190)  -- The first value indicating
>> Umlaufsekunde
>> 2> (135,null,1483517984877,1190)
>> 2> (155,null,1483517986861,1190)
>> 4> (145,null,1483517985752,1190)
>> 3> (135,null,1483517985424,1190)
>> 4> (195,null,1483517990736,1190)
>> 4> (255,null,1483517997424,1190)
>> 2> (205,null,1483517991518,1190)
>> 2> (275,null,1483517999330,1190)
>> 2> (385,null,1483518865371,1190)
>> 2> (395,null,1483518866840,1190)
>> 1> (155,null,1483517986533,1190)
>> 4> (285,null,1483518000189,1190)
>> 4> (395,null,1483518866231,1190)
>>
>> I have also tried using the Timestamps and Watermarks but no luck as
>> follows:
>>
>> public class TimestampExtractor implements 
>> AssignerWithPeriodicWatermarks<Tuple5<String,
>> Long, List<Lane>, Long, Long>>{
>>
>>     private long currentMaxTimestamp;
>>
>>     @Override
>>     public Watermark getCurrentWatermark() {
>>         return new Watermark(currentMaxTimestamp);
>>     }
>>
>>     @Override
>>     public long extractTimestamp(Tuple5<String, Long> element, long
>> previousElementTimestamp) {
>>         long timestamp = element.getField(1);
>>         currentMaxTimestamp = timestamp;
>>         return currentMaxTimestamp;
>>   }
>>
>> }
>>
>> Could anyone suggest how do I handle this problem for the arrival of
>> events in order ?
>>
>> ​Thanks!​
>>
>>
>>
>>
>


-- 
Thanks & Regards,

*Abdul Salam Shaikh*

Reply via email to