On 11/09/2011 10:18 AM, Marek Vasut wrote: > Signed-off-by: Marek Vasut <marek.va...@gmail.com> > Cc: Scott Wood <scottw...@freescale.com> > Cc: Stefano Babic <sba...@denx.de> > Cc: Wolfgang Denk <w...@denx.de> > Cc: Detlev Zundel <d...@denx.de> > --- > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/mxs_nand.c | 1118 > +++++++++++++++++++++++++++++++++++++++++++ > 2 files changed, 1119 insertions(+), 0 deletions(-) > create mode 100644 drivers/mtd/nand/mxs_nand.c > > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 28bd350..36ee454 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -54,6 +54,7 @@ COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o > COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o > COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o > COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o > +COBJS-$(CONFIG_NAND_MXS) += mxs_nand.o > COBJS-$(CONFIG_NAND_NDFC) += ndfc.o > COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o > COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o > diff --git a/drivers/mtd/nand/mxs_nand.c b/drivers/mtd/nand/mxs_nand.c > new file mode 100644 > index 0000000..ce2a326 > --- /dev/null > +++ b/drivers/mtd/nand/mxs_nand.c > @@ -0,0 +1,1118 @@ > +/* > + * Freescale i.MX28 NAND flash driver > + * > + * Copyright (C) 2011 Marek Vasut <marek.va...@gmail.com> > + * on behalf of DENX Software Engineering GmbH > + * > + * Based on code from LTIB: > + * Freescale GPMI NFC NAND Flash Driver > + * > + * Copyright (C) 2010 Freescale Semiconductor, Inc. > + * Copyright (C) 2008 Embedded Alley Solutions, Inc. > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License as published by > + * the Free Software Foundation; either version 2 of the License, or > + * (at your option) any later version. > + * > + * This program is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > + * GNU General Public License for more details. > + * > + * You should have received a copy of the GNU General Public License along > + * with this program; if not, write to the Free Software Foundation, Inc., > + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. > + */ > + > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/nand.h> > +#include <linux/types.h> > +#include <common.h> > +#include <malloc.h> > +#include <asm/errno.h> > +#include <asm/io.h> > +#include <asm/arch/clock.h> > +#include <asm/arch/imx-regs.h> > +#include <asm/arch/sys_proto.h> > +#include <asm/arch/dma.h> > + > +#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 > + > +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 > +#define MXS_NAND_METADATA_SIZE 10 > + > +#define MXS_NAND_COMMAND_BUFFER_SIZE 32 > + > +#define MXS_NAND_BCH_TIMEOUT 10000 > + > +struct mxs_nand_info { > + int cur_chip; > + > + uint32_t cmd_queue_len; > + > + uint8_t *cmd_buf; > + uint8_t *data_buf; > + uint8_t *oob_buf; > + > + uint8_t marking_block_bad; > + uint8_t raw_oob_mode; > + > + /* Functions with altered behaviour */ > + int (*hooked_read_oob)(struct mtd_info *mtd, > + loff_t from, struct mtd_oob_ops *ops); > + int (*hooked_write_oob)(struct mtd_info *mtd, > + loff_t to, struct mtd_oob_ops *ops); > + int (*hooked_block_markbad)(struct mtd_info *mtd, > + loff_t ofs); > + > + /* DMA descriptors */ > + struct mxs_dma_desc **desc; > + uint32_t desc_index; > +}; > + > +struct nand_ecclayout fake_ecc_layout; > + > +static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) > +{ > + struct mxs_dma_desc *desc; > + > + if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { > + printf("MXS NAND: Too many DMA descriptors requested\n"); > + return NULL; > + } > + > + desc = info->desc[info->desc_index]; > + info->desc_index++; > + > + return desc; > +} > + > +static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) > +{ > + int i; > + struct mxs_dma_desc *desc; > + > + for (i = 0; i < info->desc_index; i++) { > + desc = info->desc[i]; > + memset(desc, 0, sizeof(struct mxs_dma_desc)); > + desc->address = (dma_addr_t)desc; > + } > + > + info->desc_index = 0; > +} > + > +static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) > +{ > + return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; > +} > + > +static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) > +{ > + return ecc_strength * 13; > +} > + > +static uint32_t mxs_nand_aux_status_offset(void) > +{ > + return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; > +} > + > +static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size, > + uint32_t page_oob_size) > +{ > + if (page_data_size == 2048) > + return 8; > + > + if (page_data_size == 4096) { > + if (page_oob_size == 128) > + return 8; > + > + if (page_oob_size == 218) > + return 16; > + } > + > + return 0; > +} > + > +static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, > + uint32_t ecc_strength) > +{ > + uint32_t chunk_data_size_in_bits; > + uint32_t chunk_ecc_size_in_bits; > + uint32_t chunk_total_size_in_bits; > + uint32_t block_mark_chunk_number; > + uint32_t block_mark_chunk_bit_offset; > + uint32_t block_mark_bit_offset; > + > + chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; > + chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); > + > + chunk_total_size_in_bits = > + chunk_data_size_in_bits + chunk_ecc_size_in_bits; > + > + /* Compute the bit offset of the block mark within the physical page. */ > + block_mark_bit_offset = page_data_size * 8; > + > + /* Subtract the metadata bits. */ > + block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; > + > + /* > + * Compute the chunk number (starting at zero) in which the block mark > + * appears. > + */ > + block_mark_chunk_number = > + block_mark_bit_offset / chunk_total_size_in_bits; > + > + /* > + * Compute the bit offset of the block mark within its chunk, and > + * validate it. > + */ > + block_mark_chunk_bit_offset = block_mark_bit_offset - > + (block_mark_chunk_number * chunk_total_size_in_bits); > + > + if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) > + return 1; > + > + /* > + * Now that we know the chunk number in which the block mark appears, > + * we can subtract all the ECC bits that appear before it. > + */ > + block_mark_bit_offset -= > + block_mark_chunk_number * chunk_ecc_size_in_bits; > + > + return block_mark_bit_offset; > +} > + > +static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) > +{ > + uint32_t ecc_strength; > + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); > + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; > +} > + > +static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) > +{ > + uint32_t ecc_strength; > + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); > + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; > +} > + > +/* > + * Wait for BCH complete IRQ and clear the IRQ > + */ > +static int mxs_nand_wait_for_bch_complete(void) > +{ > + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE; > + int timeout = MXS_NAND_BCH_TIMEOUT; > + int ret; > + > + ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, > + BCH_CTRL_COMPLETE_IRQ, timeout); > + > + writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); > + > + return ret; > +} > + > +/* > + * This is the function that we install in the cmd_ctrl function pointer of > the > + * owning struct nand_chip. The only functions in the reference > implementation > + * that use these functions pointers are cmdfunc and select_chip. > + * > + * In this driver, we implement our own select_chip, so this function will > only > + * be called by the reference implementation's cmdfunc. For this reason, we > can > + * ignore the chip enable bit and concentrate only on sending bytes to the > NAND > + * Flash. > + */ > +static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int > ctrl) > +{ > + struct nand_chip *nand = mtd->priv; > + struct mxs_nand_info *nand_info = nand->priv; > + struct mxs_dma_desc *d; > + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; > + int ret; > + > + /* > + * If this condition is true, something is _VERY_ wrong in MTD > + * subsystem! > + */ > + if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { > + printf("MXS NAND: Command queue too long\n"); > + return; > + } > + > + /* > + * Every operation begins with a command byte and a series of zero or > + * more address bytes. These are distinguished by either the Address > + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being > + * asserted. When MTD is ready to execute the command, it will > + * deasert both latch enables. > + * > + * Rather than run a separate DMA operation for every single byte, we > + * queue them up and run a single DMA operation for the entire series > + * of command and data bytes. > + */ > + if (ctrl & (NAND_ALE | NAND_CLE)) { > + if (data != NAND_CMD_NONE) > + nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; > + return; > + } > + > + /* > + * If control arrives here, MTD has deasserted both the ALE and CLE, > + * which means it's ready to run an operation. Check if we have any > + * bytes to send. > + */ > + if (nand_info->cmd_queue_len == 0) > + return; > + > + /* Compile the DMA descriptor -- a descriptor that sends command. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | > + MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | > + (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); > + > + d->cmd.address = (dma_addr_t)nand_info->cmd_buf; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WRITE | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_CLE | > + GPMI_CTRL0_ADDRESS_INCREMENT | > + nand_info->cmd_queue_len; > + > + mxs_dma_desc_append(channel, d); > + > + /* Execute the DMA chain. */ > + ret = mxs_dma_go(channel); > + if (ret) > + printf("MXS NAND: Error sending command\n"); > + > + mxs_nand_return_dma_descs(nand_info); > + > + /* Reset the command queue. */ > + nand_info->cmd_queue_len = 0; > +} > + > +/* > + * Test if the NAND flash is ready. > + */ > +static int mxs_nand_device_ready(struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd->priv; > + struct mxs_nand_info *nand_info = chip->priv; > + struct mx28_gpmi_regs *gpmi_regs = > + (struct mx28_gpmi_regs *)MXS_GPMI_BASE; > + uint32_t tmp; > + > + tmp = readl(&gpmi_regs->hw_gpmi_stat); > + tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); > + > + return tmp & 1; > +} > + > +/* > + * Select the NAND chip. > + */ > +static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) > +{ > + struct nand_chip *nand = mtd->priv; > + struct mxs_nand_info *nand_info = nand->priv; > + > + nand_info->cur_chip = chip; > +} > + > +/* > + * Handle block mark swapping. > + * > + * Note that, when this function is called, it doesn't know whether it's > + * swapping the block mark, or swapping it *back* -- but it doesn't matter > + * because the the operation is the same. > + */ > +static void mxs_nand_swap_block_mark(struct mtd_info *mtd, > + uint8_t *data_buf, uint8_t *oob_buf) > +{ > + uint32_t bit_offset; > + uint32_t buf_offset; > + > + uint32_t src; > + uint32_t dst; > + > + bit_offset = mxs_nand_mark_bit_offset(mtd); > + buf_offset = mxs_nand_mark_byte_offset(mtd); > + > + /* > + * Get the byte from the data area that overlays the block mark. Since > + * the ECC engine applies its own view to the bits in the page, the > + * physical block mark won't (in general) appear on a byte boundary in > + * the data. > + */ > + src = data_buf[buf_offset] >> bit_offset; > + src |= data_buf[buf_offset + 1] << (8 - bit_offset); > + > + dst = oob_buf[0]; > + > + oob_buf[0] = src; > + > + data_buf[buf_offset] &= ~(0xff << bit_offset); > + data_buf[buf_offset + 1] &= 0xff << bit_offset; > + > + data_buf[buf_offset] |= dst << bit_offset; > + data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); > +} > + > +/* > + * Read data from NAND. > + */ > +static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) > +{ > + struct nand_chip *nand = mtd->priv; > + struct mxs_nand_info *nand_info = nand->priv; > + struct mxs_dma_desc *d; > + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; > + int ret; > + > + if (length > NAND_MAX_PAGESIZE) { > + printf("MXS NAND: DMA buffer too big\n"); > + return; > + } > + > + if (!buf) { > + printf("MXS NAND: DMA buffer is NULL\n"); > + return; > + } > + > + /* Compile the DMA descriptor - a descriptor that reads data. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | > + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | > + (length << MXS_DMA_DESC_BYTES_OFFSET); > + > + d->cmd.address = (dma_addr_t)nand_info->data_buf; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_READ | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA | > + length; > + > + mxs_dma_desc_append(channel, d); > + > + /* > + * A DMA descriptor that waits for the command to end and the chip to > + * become ready. > + * > + * I think we actually should *not* be waiting for the chip to become > + * ready because, after all, we don't care. I think the original code > + * did that and no one has re-thought it yet. > + */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | > + MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET); > + > + d->cmd.address = 0; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA; > + > + mxs_dma_desc_append(channel, d); > + > + /* Execute the DMA chain. */ > + ret = mxs_dma_go(channel); > + if (ret) { > + printf("MXS NAND: DMA read error\n"); > + goto rtn; > + } > + > + memcpy(buf, nand_info->data_buf, length); > + > +rtn: > + mxs_nand_return_dma_descs(nand_info); > +} > + > +/* > + * Write data to NAND. > + */ > +static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, > + int length) > +{ > + struct nand_chip *nand = mtd->priv; > + struct mxs_nand_info *nand_info = nand->priv; > + struct mxs_dma_desc *d; > + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; > + int ret; > + > + if (length > NAND_MAX_PAGESIZE) { > + printf("MXS NAND: DMA buffer too big\n"); > + return; > + } > + > + if (!buf) { > + printf("MXS NAND: DMA buffer is NULL\n"); > + return; > + } > + > + memcpy(nand_info->data_buf, buf, length); > + > + /* Compile the DMA descriptor - a descriptor that writes data. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | > + (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | > + (length << MXS_DMA_DESC_BYTES_OFFSET); > + > + d->cmd.address = (dma_addr_t)nand_info->data_buf; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WRITE | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA | > + length; > + > + mxs_dma_desc_append(channel, d); > + > + /* Execute the DMA chain. */ > + ret = mxs_dma_go(channel); > + if (ret) > + printf("MXS NAND: DMA write error\n"); > + > + mxs_nand_return_dma_descs(nand_info); > +} > + > +/* > + * Read a single byte from NAND. > + */ > +static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) > +{ > + uint8_t buf; > + mxs_nand_read_buf(mtd, &buf, 1); > + return buf; > +} > + > +/* > + * Read a page from NAND. > + */ > +static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip > *nand, > + uint8_t *buf, int page) > +{ > + struct mxs_nand_info *nand_info = nand->priv; > + struct mxs_dma_desc *d; > + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; > + uint32_t corrected = 0, failed = 0; > + uint8_t *status; > + int i, ret; > + > + /* Compile the DMA descriptor - wait for ready. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | > + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | > + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); > + > + d->cmd.address = 0; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA; > + > + mxs_dma_desc_append(channel, d); > + > + /* Compile the DMA descriptor - enable the BCH block and read. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | > + MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); > + > + d->cmd.address = 0; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_READ | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA | > + (mtd->writesize + mtd->oobsize); > + d->cmd.pio_words[1] = 0; > + d->cmd.pio_words[2] = > + GPMI_ECCCTRL_ENABLE_ECC | > + GPMI_ECCCTRL_ECC_CMD_DECODE | > + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; > + d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; > + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; > + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; > + > + mxs_dma_desc_append(channel, d); > + > + /* Compile the DMA descriptor - disable the BCH block. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | > + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | > + (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); > + > + d->cmd.address = 0; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA | > + (mtd->writesize + mtd->oobsize); > + d->cmd.pio_words[1] = 0; > + d->cmd.pio_words[2] = 0; > + > + mxs_dma_desc_append(channel, d); > + > + /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_DEC_SEM; > + > + d->cmd.address = 0; > + > + mxs_dma_desc_append(channel, d); > + > + /* Execute the DMA chain. */ > + ret = mxs_dma_go(channel); > + if (ret) { > + printf("MXS NAND: DMA read error\n"); > + goto rtn; > + } > + > + ret = mxs_nand_wait_for_bch_complete(); > + if (ret) { > + printf("MXS NAND: BCH read timeout\n"); > + goto rtn; > + } > + > + /* Read DMA completed, now do the mark swapping. */ > + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); > + > + /* Loop over status bytes, accumulating ECC status. */ > + status = nand_info->oob_buf + mxs_nand_aux_status_offset(); > + for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { > + if (status[i] == 0x00) > + continue; > + > + if (status[i] == 0xff) > + continue; > + > + if (status[i] == 0xfe) { > + failed++; > + continue; > + } > + > + corrected += status[i]; > + } > + > + /* Propagate ECC status to the owning MTD. */ > + mtd->ecc_stats.failed += failed; > + mtd->ecc_stats.corrected += corrected; > + > + /* > + * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for > + * details about our policy for delivering the OOB. > + * > + * We fill the caller's buffer with set bits, and then copy the block > + * mark to the caller's buffer. Note that, if block mark swapping was > + * necessary, it has already been done, so we can rely on the first > + * byte of the auxiliary buffer to contain the block mark. > + */ > + memset(nand->oob_poi, 0xff, mtd->oobsize); > + > + nand->oob_poi[0] = nand_info->oob_buf[0]; > + > + memcpy(buf, nand_info->data_buf, mtd->writesize); > + > +rtn: > + mxs_nand_return_dma_descs(nand_info); > + > + return ret; > +} > + > +/* > + * Write a page to NAND. > + */ > +static void mxs_nand_ecc_write_page(struct mtd_info *mtd, > + struct nand_chip *nand, const uint8_t *buf) > +{ > + struct mxs_nand_info *nand_info = nand->priv; > + struct mxs_dma_desc *d; > + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; > + int ret; > + > + memcpy(nand_info->data_buf, buf, mtd->writesize); > + memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); > + > + /* Handle block mark swapping. */ > + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); > + > + /* Compile the DMA descriptor - write data. */ > + d = mxs_nand_get_dma_desc(nand_info); > + d->cmd.data = > + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | > + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | > + (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); > + > + d->cmd.address = 0; > + > + d->cmd.pio_words[0] = > + GPMI_CTRL0_COMMAND_MODE_WRITE | > + GPMI_CTRL0_WORD_LENGTH | > + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | > + GPMI_CTRL0_ADDRESS_NAND_DATA; > + d->cmd.pio_words[1] = 0; > + d->cmd.pio_words[2] = > + GPMI_ECCCTRL_ENABLE_ECC | > + GPMI_ECCCTRL_ECC_CMD_ENCODE | > + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; > + d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); > + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; > + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; > + > + mxs_dma_desc_append(channel, d); > + > + /* Execute the DMA chain. */ > + ret = mxs_dma_go(channel); > + if (ret) { > + printf("MXS NAND: DMA write error\n"); > + goto rtn; > + } > + > + ret = mxs_nand_wait_for_bch_complete(); > + if (ret) { > + printf("MXS NAND: BCH write timeout\n"); > + goto rtn; > + } > + > +rtn: > + mxs_nand_return_dma_descs(nand_info); > +} > + > +/* > + * Read OOB from NAND. > + * > + * This function is a veneer that replaces the function originally installed > by > + * the NAND Flash MTD code. > + */ > +static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, > + struct mtd_oob_ops *ops) > +{ > + struct nand_chip *chip = mtd->priv; > + struct mxs_nand_info *nand_info = chip->priv; > + int ret; > + > + if (ops->mode == MTD_OOB_RAW) > + nand_info->raw_oob_mode = 1; > + else > + nand_info->raw_oob_mode = 0; > + > + ret = nand_info->hooked_read_oob(mtd, from, ops); > + > + nand_info->raw_oob_mode = 0; > + > + return ret; > +} > + > +/* > + * Write OOB to NAND. > + * > + * This function is a veneer that replaces the function originally installed > by > + * the NAND Flash MTD code. > + */ > +static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, > + struct mtd_oob_ops *ops) > +{ > + struct nand_chip *chip = mtd->priv; > + struct mxs_nand_info *nand_info = chip->priv; > + int ret; > + > + if (ops->mode == MTD_OOB_RAW) > + nand_info->raw_oob_mode = 1; > + else > + nand_info->raw_oob_mode = 0; > + > + ret = nand_info->hooked_write_oob(mtd, to, ops); > + > + nand_info->raw_oob_mode = 0; > + > + return ret; > +} > + > +/* > + * Mark a block bad in NAND. > + * > + * This function is a veneer that replaces the function originally installed > by > + * the NAND Flash MTD code. > + */ > +static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) > +{ > + struct nand_chip *chip = mtd->priv; > + struct mxs_nand_info *nand_info = chip->priv; > + int ret; > + > + nand_info->marking_block_bad = 1; > + > + ret = nand_info->hooked_block_markbad(mtd, ofs); > + > + nand_info->marking_block_bad = 0; > + > + return ret; > +} > + > +/* > + * There are several places in this driver where we have to handle the OOB > and > + * block marks. This is the function where things are the most complicated, > so > + * this is where we try to explain it all. All the other places refer back to > + * here. > + * > + * These are the rules, in order of decreasing importance: > + * > + * 1) Nothing the caller does can be allowed to imperil the block mark, so > all > + * write operations take measures to protect it. > + * > + * 2) In read operations, the first byte of the OOB we return must reflect > the > + * true state of the block mark, no matter where that block mark appears > in > + * the physical page. > + * > + * 3) ECC-based read operations return an OOB full of set bits (since we > never > + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based > reads > + * return). > + * > + * 4) "Raw" read operations return a direct view of the physical bytes in the > + * page, using the conventional definition of which bytes are data and > which > + * are OOB. This gives the caller a way to see the actual, physical bytes > + * in the page, without the distortions applied by our ECC engine. > + * > + * What we do for this specific read operation depends on whether we're doing > + * "raw" read, or an ECC-based read. > + * > + * It turns out that knowing whether we want an "ECC-based" or "raw" read is > not > + * easy. When reading a page, for example, the NAND Flash MTD code calls our > + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD > wants an > + * ECC-based or raw view of the page is implicit in which function it calls > + * (there is a similar pair of ECC-based/raw functions for writing). > + * > + * Since MTD assumes the OOB is not covered by ECC, there is no pair of > + * ECC-based/raw functions for reading or or writing the OOB. The fact that > the > + * caller wants an ECC-based or raw view of the page is not propagated down > to > + * this driver. > + * > + * Since our OOB *is* covered by ECC, we need this information. So, we hook > the > + * ecc.read_oob and ecc.write_oob function pointers in the owning > + * struct mtd_info with our own functions. These hook functions set the > + * raw_oob_mode field so that, when control finally arrives here, we'll know > + * what to do. > + */ > +static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip > *nand, > + int page, int cmd) > +{ > + struct mxs_nand_info *nand_info = nand->priv; > + > + /* > + * First, fill in the OOB buffer. If we're doing a raw read, we need to > + * get the bytes from the physical page. If we're not doing a raw read, > + * we need to fill the buffer with set bits. > + */ > + if (nand_info->raw_oob_mode) { > + /* > + * If control arrives here, we're doing a "raw" read. Send the > + * command to read the conventional OOB and read it. > + */ > + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); > + nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); > + } else { > + /* > + * If control arrives here, we're not doing a "raw" read. Fill > + * the OOB buffer with set bits and correct the block mark. > + */ > + memset(nand->oob_poi, 0xff, mtd->oobsize); > + > + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); > + mxs_nand_read_buf(mtd, nand->oob_poi, 1); > + } > + > + return 0; > + > +} > + > +/* > + * Write OOB data to NAND. > + */ > +static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip > *nand, > + int page) > +{ > + struct mxs_nand_info *nand_info = nand->priv; > + uint8_t block_mark = 0; > + > + /* > + * There are fundamental incompatibilities between the i.MX GPMI NFC and > + * the NAND Flash MTD model that make it essentially impossible to write > + * the out-of-band bytes. > + * > + * We permit *ONE* exception. If the *intent* of writing the OOB is to > + * mark a block bad, we can do that. > + */ > + > + if (!nand_info->marking_block_bad) { > + printf("NXS NAND: Writing OOB isn't supported\n"); > + return -EIO; > + } > + > + /* Write the block mark. */ > + nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); > + nand->write_buf(mtd, &block_mark, 1); > + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); > + > + /* Check if it worked. */ > + if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) > + return -EIO; > + > + return 0; > +} > + > +/* > + * Claims all blocks are good. > + * > + * In principle, this function is *only* called when the NAND Flash MTD > system > + * isn't allowed to keep an in-memory bad block table, so it is forced to ask > + * the driver for bad block information. > + * > + * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so > + * this function is *only* called when we take it away. > + * > + * Thus, this function is only called when we want *all* blocks to look good, > + * so it *always* return success. > + */ > +static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) > +{ > + return 0; > +} > + > +/* > + * Nominally, the purpose of this function is to look for or create the bad > + * block table. In fact, since the we call this function at the very end of > + * the initialization process started by nand_scan(), and we doesn't have a > + * more formal mechanism, we "hook" this function to continue init process. > + * > + * At this point, the physical NAND Flash chips have been identified and > + * counted, so we know the physical geometry. This enables us to make some > + * important configuration decisions. > + * > + * The return value of this function propogates directly back to this > driver's > + * call to nand_scan(). Anything other than zero will cause this driver to > + * tear everything down and declare failure. > + */ > +static int mxs_nand_scan_bbt(struct mtd_info *mtd) > +{ > + struct nand_chip *nand = mtd->priv; > + struct mxs_nand_info *nand_info = nand->priv; > + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE; > + uint32_t tmp; > + > + /* Configure BCH and set NFC geometry */ > + mx28_reset_block(&bch_regs->hw_bch_ctrl_reg); > + > + /* Configure layout 0 */ > + tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) > + << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; > + tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; > + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) > + << BCH_FLASHLAYOUT0_ECC0_OFFSET; > + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE; > + writel(tmp, &bch_regs->hw_bch_flash0layout0); > + > + tmp = (mtd->writesize + mtd->oobsize) > + << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; > + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) > + << BCH_FLASHLAYOUT1_ECCN_OFFSET; > + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE; > + writel(tmp, &bch_regs->hw_bch_flash0layout1); > + > + /* Set *all* chip selects to use layout 0 */ > + writel(0, &bch_regs->hw_bch_layoutselect); > + > + /* Enable BCH complete interrupt */ > + writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); > + > + /* Hook some operations at the MTD level. */ > + if (mtd->read_oob != mxs_nand_hook_read_oob) { > + nand_info->hooked_read_oob = mtd->read_oob; > + mtd->read_oob = mxs_nand_hook_read_oob; > + } > + > + if (mtd->write_oob != mxs_nand_hook_write_oob) { > + nand_info->hooked_write_oob = mtd->write_oob; > + mtd->write_oob = mxs_nand_hook_write_oob; > + } > + > + if (mtd->block_markbad != mxs_nand_hook_block_markbad) { > + nand_info->hooked_block_markbad = mtd->block_markbad; > + mtd->block_markbad = mxs_nand_hook_block_markbad; > + } > + > + /* We use the reference implementation for bad block management. */ > + return nand_default_bbt(mtd); > +} > + > +/* > + * Allocate DMA buffers > + */ > +int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) > +{ > + uint8_t *buf; > + const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; > + > + /* DMA buffers */ > + buf = memalign(MXS_DMA_ALIGNMENT, size); > + if (!buf) { > + printf("MXS NAND: Error allocating DMA buffers\n"); > + return -ENOMEM; > + } > + > + memset(buf, 0, size); > + > + nand_info->data_buf = buf; > + nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; > + > + /* Command buffers */ > + nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, > + MXS_NAND_COMMAND_BUFFER_SIZE); > + if (!nand_info->cmd_buf) { > + free(buf); > + printf("MXS NAND: Error allocating command buffers\n"); > + return -ENOMEM; > + } > + memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); > + nand_info->cmd_queue_len = 0; > + > + return 0; > +} > + > +/* > + * Initializes the NFC hardware. > + */ > +int mxs_nand_init(struct mxs_nand_info *info) > +{ > + struct mx28_gpmi_regs *gpmi_regs = > + (struct mx28_gpmi_regs *)MXS_GPMI_BASE; > + int i = 0; > + > + info->desc = malloc(sizeof(struct mxs_dma_desc *) * > + MXS_NAND_DMA_DESCRIPTOR_COUNT); > + if (!info->desc) > + goto err1; > + > + /* Allocate the DMA descriptors. */ > + for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { > + info->desc[i] = mxs_dma_desc_alloc(); > + if (!info->desc[i]) > + goto err2; > + } > + > + /* Init the DMA controller. */ > + mxs_dma_init(); > + > + /* Reset the GPMI block. */ > + mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); > + > + /* > + * Choose NAND mode, set IRQ polarity, disable write protection and > + * select BCH ECC. > + */ > + clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, > + GPMI_CTRL1_GPMI_MODE, > + GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | > + GPMI_CTRL1_BCH_MODE); > + > + return 0; > + > +err2: > + free(info->desc); > +err1: > + for (--i; i >= 0; i--) > + mxs_dma_desc_free(info->desc[i]); > + printf("MXS NAND: Unable to allocate DMA descriptors\n"); > + return -ENOMEM; > +} > + > +/*! > + * This function is called during the driver binding process. > + * > + * @param pdev the device structure used to store device specific > + * information that is used by the suspend, resume and > + * remove functions > + * > + * @return The function always returns 0. > + */ > +int board_nand_init(struct nand_chip *nand) > +{ > + struct mxs_nand_info *nand_info; > + int err; > + > + nand_info = malloc(sizeof(struct mxs_nand_info)); > + if (!nand_info) { > + printf("MXS NAND: Failed to allocate private data\n"); > + return -ENOMEM; > + } > + memset(nand_info, 0, sizeof(struct mxs_nand_info)); > + > + err = mxs_nand_alloc_buffers(nand_info); > + if (err) > + goto err1; > + > + err = mxs_nand_init(nand_info); > + if (err) > + goto err2; > + > + memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); > + > + nand->priv = nand_info; > + nand->options |= NAND_NO_SUBPAGE_WRITE; > + > + nand->cmd_ctrl = mxs_nand_cmd_ctrl; > + > + nand->dev_ready = mxs_nand_device_ready; > + nand->select_chip = mxs_nand_select_chip; > + nand->block_bad = mxs_nand_block_bad; > + nand->scan_bbt = mxs_nand_scan_bbt; > + > + nand->read_byte = mxs_nand_read_byte; > + > + nand->read_buf = mxs_nand_read_buf; > + nand->write_buf = mxs_nand_write_buf; > + > + nand->ecc.read_page = mxs_nand_ecc_read_page; > + nand->ecc.write_page = mxs_nand_ecc_write_page; > + nand->ecc.read_oob = mxs_nand_ecc_read_oob; > + nand->ecc.write_oob = mxs_nand_ecc_write_oob; > + > + nand->ecc.layout = &fake_ecc_layout; > + nand->ecc.mode = NAND_ECC_HW; > + nand->ecc.bytes = 9; > + nand->ecc.size = 512; > + > + return 0; > + > +err2: > + free(nand_info->data_buf); > + free(nand_info->cmd_buf); > +err1: > + free(nand_info); > + return err; > +}
Applied to u-boot-imx, thanks. Best regards, Stefano Babic -- ===================================================================== DENX Software Engineering GmbH, MD: Wolfgang Denk & Detlev Zundel HRB 165235 Munich, Office: Kirchenstr.5, D-82194 Groebenzell, Germany Phone: +49-8142-66989-0 Fax: +49-8142-66989-80 Email: off...@denx.de ===================================================================== _______________________________________________ U-Boot mailing list U-Boot@lists.denx.de http://lists.denx.de/mailman/listinfo/u-boot