I thought up an idea for this, insted of trying to detect the white text in general, why not try to detect the patterns the spammers are using with them.. Take the following rules as an example:
rawbody FVGT_rb_WHITE_6_WHITE /fffff[f0-9].{6}<font.{7,25}fffff/i describe FVGT_rb_WHITE_6_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_6_WHITE 1.0 rawbody FVGT_rb_WHITE_7_WHITE /fffff[f0-9].{7}<font.{7,25}fffff/i describe FVGT_rb_WHITE_7_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_7_WHITE 1.0 rawbody FVGT_rb_WHITE_8_WHITE /fffff[f0-9].{8}<font.{7,25}fffff/i describe FVGT_rb_WHITE_8_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_8_WHITE 1.0 rawbody FVGT_rb_WHITE_9_WHITE /fffff[f0-9].{9}<font.{7,25}fffff/i describe FVGT_rb_WHITE_9_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_9_WHITE 1.0 rawbody FVGT_rb_WHITE_10_WHITE /fffff[f0-9].{10}<font.{7,25}fffff/i describe FVGT_rb_WHITE_10_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_10_WHITE 1.0 rawbody FVGT_rb_WHITE_11_WHITE /fffff[f0-9].{11}<font.{7,25}fffff/i describe FVGT_rb_WHITE_11_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_11_WHITE 1.0 rawbody FVGT_rb_WHITE_12_WHITE /fffff[f0-9].{12}<font.{7,25}fffff/i describe FVGT_rb_WHITE_12_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_12_WHITE 1.0 rawbody FVGT_rb_WHITE_13_WHITE /fffff[f0-9].{13}<font.{7,25}fffff/i describe FVGT_rb_WHITE_13_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_13_WHITE 1.0 rawbody FVGT_rb_WHITE_14_WHITE /fffff[f0-9].{14}<font.{7,25}fffff/i describe FVGT_rb_WHITE_14_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_14_WHITE 1.0 rawbody FVGT_rb_WHITE_15_WHITE /fffff[f0-9].{15}<font.{7,25}fffff/i describe FVGT_rb_WHITE_15_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_15_WHITE 1.0 rawbody FVGT_rb_WHITE_16_WHITE /fffff[f0-9].{16}<font.{7,25}fffff/i describe FVGT_rb_WHITE_16_WHITE Has white color, a word, then white color. score FVGT_rb_WHITE_16_WHITE 1.0 This might be a better approach to detecting these messages. Not all messages which use invisible text will trigger on these rules but it'll find those that send messages like your example. My mass check shows this: OVERALL SPAM HAM S/O SCORE NAME 46880 32070 14810 0.684 0.00 0.00 (all messages) 50 50 0 1.000 1.00 1.00 FVGT_rb_WHITE_12_WHITE 47 47 0 1.000 0.88 1.00 FVGT_rb_WHITE_14_WHITE 46 46 0 1.000 0.85 1.00 FVGT_rb_WHITE_13_WHITE 45 45 0 1.000 0.81 1.00 FVGT_rb_WHITE_16_WHITE 40 40 0 1.000 0.62 1.00 FVGT_rb_WHITE_15_WHITE 36 36 0 1.000 0.46 1.00 FVGT_rb_WHITE_11_WHITE 30 30 0 1.000 0.23 1.00 FVGT_rb_WHITE_9_WHITE 30 30 0 1.000 0.23 1.00 FVGT_rb_WHITE_10_WHITE 30 30 0 1.000 0.23 1.00 FVGT_rb_WHITE_8_WHITE 27 27 0 1.000 0.12 1.00 FVGT_rb_WHITE_7_WHITE 24 24 0 1.000 0.00 1.00 FVGT_rb_WHITE_6_WHITE At least the mass-check says these rules are safe ;) Not exactly extremely effective but they appear to be safe! Frederic Tarasevicius Internet Information Services, Inc. http://www.i-is.com/ ------------------------------------------------------- This SF.net email is sponsored by: IBM Linux Tutorials. Become an expert in LINUX or just sharpen your skills. Sign up for IBM's Free Linux Tutorials. Learn everything from the bash shell to sys admin. Click now! http://ads.osdn.com/?ad_id=1278&alloc_id=3371&op=click _______________________________________________ Spamassassin-talk mailing list [EMAIL PROTECTED] https://lists.sourceforge.net/lists/listinfo/spamassassin-talk