[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread Alexander R.Povolotsky
Robert Israel clarified that I was incorrect in feeding Maple's output into WolframAlpha - I am quoting his reply -- Forwarded message -- From: Robert Israel I believe Mathematica's EllipticE[x] is Maple's EllipticE(sqrt(x)). Maple defines EllipticE(k) = int_0^1 sqrt(1 - k^2 t^2)/

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread Alexander R.Povolotsky
Perhaps - I let it be known to Robert Israel who was kindly doing Maple part for me. If he reconfirms it - he will pass it along to Maple people, I presume. Thanks for helping, Alex On Sep 7, 2:43 pm, William Stein wrote: > On Mon, Sep 7, 2009 at 11:40 AM, Alexander > > > > R.Povolotsky wrote:

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread William Stein
On Mon, Sep 7, 2009 at 11:40 AM, Alexander R.Povolotsky wrote: > > WolframAlpha gives > > 2*EllipticE[1/2]=2*E(1/2)= >  (8*Pi^(3/2))/Gamma(-1/4)^2+Gamma(3/4)^2/sqrt(Pi) > =2.7012877620953510050403494706774516826990447338487090906465... > > 2*EllipticE[3/4]=2*E(3/4) = >  Pi*sum_(k=0)^infinity((3/4)

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread Alexander R.Povolotsky
WolframAlpha gives 2*EllipticE[1/2]=2*E(1/2)= (8*Pi^(3/2))/Gamma(-1/4)^2+Gamma(3/4)^2/sqrt(Pi) =2.7012877620953510050403494706774516826990447338487090906465... 2*EllipticE[3/4]=2*E(3/4) = Pi*sum_(k=0)^infinity((3/4)^k*((-1/2)_k (1/2)_k))/(k!)^2 =2.4221120551369190496071257990979573529884795994

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread William Stein
On Mon, Sep 7, 2009 at 11:12 AM, Alexander R.Povolotsky wrote: > > Could you try specific "n" cases (4 and 6) > > sage: integrate((cos(t)^n+sin(t)^n)^(1/2), t,0,pi) > > and > > sage: integrate((cos(t)^6+sin(t)^6)^(1/2), t,0,pi) > > Thanks, > Alex Sure. By the way, if you go to http://sagenb.org/

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread Alexander R.Povolotsky
Could you try specific "n" cases (4 and 6) sage: integrate((cos(t)^n+sin(t)^n)^(1/2), t,0,pi) and sage: integrate((cos(t)^6+sin(t)^6)^(1/2), t,0,pi) Thanks, Alex On Sep 7, 12:28 pm, William Stein wrote: > On Mon, Sep 7, 2009 at 9:19 AM, Alexander > > > > R.Povolotsky wrote: > > > For > > Int

[sage-support] Re: Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

2009-09-07 Thread William Stein
On Mon, Sep 7, 2009 at 9:19 AM, Alexander R.Povolotsky wrote: > > For > Int((cos(t)^n+sin(t)^n)^(1/2),t = 0 ... Pi) > that is > Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}] > > 1) n=4 > Maple gives > EllipticE(I)*sqrt(2) > vs > Mathemtica's > 2*EllipticE[1/2] > > and > 2) n=6 > Maple gives >