Could you try specific "n" cases (4 and 6) sage: integrate((cos(t)^n+sin(t)^n)^(1/2), t,0,pi)
and sage: integrate((cos(t)^6+sin(t)^6)^(1/2), t,0,pi) Thanks, Alex On Sep 7, 12:28 pm, William Stein <wst...@gmail.com> wrote: > On Mon, Sep 7, 2009 at 9:19 AM, Alexander > > > > R.Povolotsky<apovo...@gmail.com> wrote: > > > For > > Int((cos(t)^n+sin(t)^n)^(1/2),t = 0 ... Pi) > > that is > > Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}] > > > 1) n=4 > > Maple gives > > EllipticE(I)*sqrt(2) > > vs > > Mathemtica's > > 2*EllipticE[1/2] > > > and > > 2) n=6 > > Maple gives > > EllipticE(sqrt(3)*I) > > vs > > Mathematica's > > 2 EllipticE[3/4] > > > In both cases above Maple has explicit reference to the imaginary > > part I and Mathematica doesn't ... > > > What Sage does on that ? > > Here's what Sage (=Maxima in this case) does: > > sage: var('t,n') > (t, n) > sage: integrate((cos(t)^n+sin(t)^n)^(1/2), t,0,pi) > integrate(sqrt(sin(t)^n + cos(t)^n), t, 0, pi) > > i.e., nothing, it doesn't know how to compute that integral. > > -- William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---