WolframAlpha gives

2*EllipticE[1/2]=2*E(1/2)=
 (8*Pi^(3/2))/Gamma(-1/4)^2+Gamma(3/4)^2/sqrt(Pi)
=2.7012877620953510050403494706774516826990447338487090906465...

2*EllipticE[3/4]=2*E(3/4) =
 Pi*sum_(k=0)^infinity((3/4)^k*((-1/2)_k (1/2)_k))/(k!)^2
=2.4221120551369190496071257990979573529884795994716502062707...

If I input Maple's output into WolframAlpha (it understands it)

EllipticE(I)*sqrt(2)=E(I)*sqrt(2)=
2.30857888069067525459669379819473812065849859340696523283...
- 0.522155213609940348327414982109757688196290110066610791396... I

EllipticE(sqrt(3)*I)=E(sqrt(3) I)
=1.71922354667492421881087059097431773281393098058387700412...
- 0.592044437093386507830834807418356168289707419289021527108... I

Cheers,
Alex


On Sep 7, 2:26 pm, William Stein <wst...@gmail.com> wrote:
> On Mon, Sep 7, 2009 at 11:12 AM, Alexander
>
> R.Povolotsky<apovo...@gmail.com> wrote:
>
> > Could you try specific "n" cases (4 and 6)
>
> > sage: integrate((cos(t)^n+sin(t)^n)^(1/2), t,0,pi)
>
> > and
>
> > sage: integrate((cos(t)^6+sin(t)^6)^(1/2), t,0,pi)
>
> > Thanks,
> > Alex
>
> Sure.  By the way, if you go tohttp://sagenb.org/and sign up (which
> takes about 10 seconds, no email address required), then you can try
> the above out yourself through your web browser.
>
> Anyway:
>
> sage: var('t')
> t
> sage: integrate((cos(t)^6+sin(t)^6)^(1/2), t,0,pi)
> integrate(sqrt(sin(t)^6 + cos(t)^6), t, 0, pi)
> sage: integrate((cos(t)^4+sin(t)^4)^(1/2), t,0,pi)
> integrate(sqrt(sin(t)^4 + cos(t)^4), t, 0, pi)
> sage: numerical_integral((cos(t)^4+sin(t)^4)^(1/2), 0,pi)[ 0 ]
> 2.701287762095351
> sage: numerical_integral((cos(t)^6+sin(t)^6)^(1/2), 0,pi)[ 0 ]
> 2.4221120551366173
>
> By the way, I computed the numerical integrals above, to get specific
> numbers, in case you're interested....  for some applications that
> might help.
>
> William
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to