... thanks, by your attention, I am reading a documentation to Implement Galois Field in other place, ...
and declare in C this static unsigned prim_poly[MAX_EXT_DEG + 1] = {◦1 , ◦3 , /∗ not used ∗/ ◦7 , ◦13 , ◦23 , ◦45 , ◦103 , ◦203 , ◦435 , ◦1041 , ◦2011 , ◦4005 , ◦10123 , ◦20033 , ◦42103 , ◦100003 , ◦210013 } and use for example 435 in representative poynomial is x^8+x^7+x^4+x^3+x+1 to build GF(2^8), and say "α is chosen as root of a primitive polynomial f . As outlined above, α does have the explicit form X + I(f ). Multiplying by α means therefore multiplying by X modulo I(f ), which in turn in binary means a right shift by one bit position. By successively multiplying the previous field element in the exponential table by α, we generate the whole field: gf_exp[i − 1]·α = α^i.", gf_exp = malloc((1 ≪ gf_extd) ∗ sizeof (∗gf_exp)); /∗ fetch some memory ∗/ gf_exp[0] = 1; for (i = 1; i < gf_ord; ++ i) { gf_exp[i] = gf_exp[i − 1] ≪ 1; /∗ multiply by α ∗/ if (gf_exp[i − 1] & (1 ≪ (gf_extd − 1))) /∗ modulo I(f ),i.e. ∗/ gf_exp[i] ⊕= prim_poly[gf_extd]; /∗ substract f for powers too high ∗/ } gf_exp[gf_ord] = 1; /∗ should be 0: hack for the multiplication ∗/ My question is, SAGE implement GF in same form? ; 2011/12/11 achrzesz <achrz...@wp.pl> > > > On Dec 12, 12:31 am, achrzesz <achrz...@wp.pl> wrote: > > On Dec 12, 12:10 am, juaninf <juan...@gmail.com> wrote: > > > > > > > > > Hi everybody > > > > > I want choose different minimal polynomial to build a Galois Field > > > 2^m, how? > > > > > For example: m = 8 > > > > > sageF.<a>=GF(2^8) > > > sage:print a.minpoly() > > > I get ... > > > x^8 + x^4 + x^3 + x^2 + 1 > > > but I want now other polynomial for example > > > x^8+x^7+x^4+x^3+x+1 > > > How? > > > > > thanks > > > > sage: K.<z>=GF(2)[] > > sage: F.<x>=GF(2^8,name='x',modulus=z^8+z^4+z^3+z+1) > > sage: F > > Finite Field in x of size 2^8 > > sage: F.polynomial() > > x^8 + x^4 + x^3 + x + 1 > > > > Andrzej Chrzeszczyk > > sage: z=K.gen() > sage: f=z^8+z^7+z^4+z^3+z+1 > sage: f.is_irreducible() > False > > Andrzej Chrzeszczyk > > -- > To post to this group, send email to sage-support@googlegroups.com > To unsubscribe from this group, send email to > sage-support+unsubscr...@googlegroups.com > For more options, visit this group at > http://groups.google.com/group/sage-support > URL: http://www.sagemath.org > -- --------------------------------------------------------------------- Juan del Carmen Grados Vásquez Laboratório Nacional de Computação Científica Tel: +55 24 2233-6260 (http://www.lncc.br/) http://juaninf.blogspot.com --------------------------------------------------------------------- -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org