On Dec 12, 12:10 am, juaninf <juan...@gmail.com> wrote: > Hi everybody > > I want choose different minimal polynomial to build a Galois Field > 2^m, how? > > For example: m = 8 > > sageF.<a>=GF(2^8) > sage:print a.minpoly() > I get ... > x^8 + x^4 + x^3 + x^2 + 1 > but I want now other polynomial for example > x^8+x^7+x^4+x^3+x+1 > How? > > thanks
sage: K.<z>=GF(2)[] sage: F.<x>=GF(2^8,name='x',modulus=z^8+z^4+z^3+z+1) sage: F Finite Field in x of size 2^8 sage: F.polynomial() x^8 + x^4 + x^3 + x + 1 Andrzej Chrzeszczyk -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org