but when I put this polynomial  x^8+x^7+x^4+x^3+x+1 I get ValueError:
finite field modulus must be irreducible but it is not

2011/12/11 achrzesz <achrz...@wp.pl>

>
>
> On Dec 12, 12:10 am, juaninf <juan...@gmail.com> wrote:
> > Hi everybody
> >
> > I want choose different minimal polynomial to build a Galois Field
> > 2^m, how?
> >
> > For example: m = 8
> >
> > sageF.<a>=GF(2^8)
> > sage:print a.minpoly()
> > I get ...
> > x^8 + x^4 + x^3 + x^2 + 1
> > but I want now other polynomial for example
> > x^8+x^7+x^4+x^3+x+1
> > How?
> >
> > thanks
>
> sage: K.<z>=GF(2)[]
> sage: F.<x>=GF(2^8,name='x',modulus=z^8+z^4+z^3+z+1)
> sage: F
> Finite Field in x of size 2^8
> sage: F.polynomial()
> x^8 + x^4 + x^3 + x + 1
>
> Andrzej Chrzeszczyk
>
> --
> To post to this group, send email to sage-support@googlegroups.com
> To unsubscribe from this group, send email to
> sage-support+unsubscr...@googlegroups.com
> For more options, visit this group at
> http://groups.google.com/group/sage-support
> URL: http://www.sagemath.org
>



-- 
---------------------------------------------------------------------
Juan del Carmen Grados Vásquez
Laboratório Nacional de Computação Científica
Tel: +55 24 2233-6260
(http://www.lncc.br/)
http://juaninf.blogspot.com
---------------------------------------------------------------------

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to