but when I put this polynomial x^8+x^7+x^4+x^3+x+1 I get ValueError: finite field modulus must be irreducible but it is not
2011/12/11 achrzesz <achrz...@wp.pl> > > > On Dec 12, 12:10 am, juaninf <juan...@gmail.com> wrote: > > Hi everybody > > > > I want choose different minimal polynomial to build a Galois Field > > 2^m, how? > > > > For example: m = 8 > > > > sageF.<a>=GF(2^8) > > sage:print a.minpoly() > > I get ... > > x^8 + x^4 + x^3 + x^2 + 1 > > but I want now other polynomial for example > > x^8+x^7+x^4+x^3+x+1 > > How? > > > > thanks > > sage: K.<z>=GF(2)[] > sage: F.<x>=GF(2^8,name='x',modulus=z^8+z^4+z^3+z+1) > sage: F > Finite Field in x of size 2^8 > sage: F.polynomial() > x^8 + x^4 + x^3 + x + 1 > > Andrzej Chrzeszczyk > > -- > To post to this group, send email to sage-support@googlegroups.com > To unsubscribe from this group, send email to > sage-support+unsubscr...@googlegroups.com > For more options, visit this group at > http://groups.google.com/group/sage-support > URL: http://www.sagemath.org > -- --------------------------------------------------------------------- Juan del Carmen Grados Vásquez Laboratório Nacional de Computação Científica Tel: +55 24 2233-6260 (http://www.lncc.br/) http://juaninf.blogspot.com --------------------------------------------------------------------- -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org