PS Your second example is a Weierstrass model but not integral:
sage: E = EllipticCurve([0,0,0,0,-81/4]) sage: E.integral_points() --------------------------------------------------------------------------- ... ValueError: integral_points() can only be called on an integral model But you can do this: sage: E1 = E.integral_model(); E1 Elliptic Curve defined by y^2 = x^3 - 1296 over Rational Field sage: E1.integral_points() [(193 : 2681 : 1)] and also this: sage: E1.S_integral_points([2]) [(193 : 2681 : 1)] which I think shows taht the only integral (or {2}-integral) solution to your equation is x=193, y=2681. Does that help? To see the documentation create an elliptic curve E (as above, say, or try EllipticCurve? to see other ways), and then do E.integral_points? or E.S_integral_points? John Cremona On Dec 7, 12:53 pm, Jaakko Seppälä <jaakko.j.sepp...@gmail.com> wrote: > Hello again! > > Is that method general? I tried now to find the integer points of x^3 > - 3*x*y^2-y^3-1 without success. > > Jaakko > > sage: R.<x,y> = QQ[] > sage: P = x^3 - 81/4 + y^2 > sage: E=EllipticCurve(P) > --------------------------------------------------------------------------- > NotImplementedError Traceback (most recent call > last) > > /home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/<ipython > console> in <module>() > > /home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/local/lib/ > python2.6/site-packages/sage/schemes/elliptic_curves/constructor.pyc > in EllipticCurve(x, y, j) > 214 return EllipticCurve([a1, a2, a3, a4, a6]) > 215 except AssertionError: > --> 216 raise NotImplementedError, "Construction of an > elliptic curve from a generic cubic not yet implemented." > 217 > 218 if rings.is_Ring(x): > > NotImplementedError: Construction of an elliptic curve from a generic > cubic not yet implemented. > sage: P = x^3 - 3*x*y^2-y^3-1 > sage: E=EllipticCurve(P) > --------------------------------------------------------------------------- > NotImplementedError Traceback (most recent call > last) > > /home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/<ipython > console> in <module>() > > /home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/local/lib/ > python2.6/site-packages/sage/schemes/elliptic_curves/constructor.pyc > in EllipticCurve(x, y, j) > 186 elif len(f.parent().gens()) == 2 or len(f.parent().gens > ()) == 3 and f.is_homogeneous(): > 187 # We'd need a point too... > --> 188 raise NotImplementedError, "Construction of an > elliptic curve from a generic cubic not yet implemented." > 189 else: > 190 raise ValueError, "Defining polynomial must be a > cubic polynomial in two variables." > > NotImplementedError: Construction of an elliptic curve from a generic > cubic not yet implemented. > > On Dec 7, 1:42 am, Yann <yannlaiglecha...@gmail.com> wrote: > > > From the example you give: > > > 2x**3+385x**2+256x-58195=3y**2 , over the rational field > > > it's not direct because sage does not handle general cubic equation > > yet. > > In sage, let's define: > > {{{ > > sage: R.<x,y> = QQ[] > > sage: P = 2*x**3 + 385*x**2 + 256*x - 58195 - 3*y**2}}} > > > Given an equation > > > A6 + A4 x + A3 y + A2 x**2 + A1 xy + A5 y**2 + A7 x**3 = 0. > > > You can obtain do by hand the change of variables Q(x' , y' ) = P( - > > x*A5*A7 , y * A7**2 * A5 ) / ( A5**3 * A7**4 ) > > a simplified equation: > > {{{ > > sage: Q = P( x=-x*(-3)*2 , y=y*2**2*(-3) ) / ( (-3)**3*2**4 ) > > sage: Q > > -x^3 - 385/12*x^2 + y^2 - 32/9*x + 58195/432 > > > }}} > > > You can then define the elliptic curve and compute integral points > > {{{ > > sage: E = EllipticCurve(Q) > > sage: time pts = E.integral_model().integral_points() > > CPU times: user 2.74 s, sys: 0.02 s, total: 2.76 s > > Wall time: 7.58 s > > > }}} > > > at this point, you need to come back to the original curve, removing > > solutions not integral after the inverse change of variables > > > {{{ > > sage: x_coords = [ x/6 for x,y,z in pts if 6.divides(ZZ(x)) ] > > sage: x_coords > > [-191, -157, -67, -49, -23, -19, 19, 23, 61, 103, 521, 817, 3857, > > 10687, 276251] > > > }}} > > > On Dec 6, 6:41 pm, Jaakko Seppälä <jaakko.j.sepp...@gmail.com> wrote: > > > > I read > > > fromhttp://mathoverflow.net/questions/7907/elliptic-curves-integer-points > > > than Sage can determine the integer points of an elliptic curve. What > > > commands will do the trick? -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org