I tried this. Do I need include some package in Sage. I have sage3.0.5dfsg-4ubuntu1 installed via apt-get. I got this output sage: time pts = E.integral_model().integral_points() --------------------------------------------------------------------------- AttributeError Traceback (most recent call last)
/home/jaakko/Desktop/<ipython console> in <module>() /usr/lib/pymodules/python2.5/IPython/iplib.pyc in ipmagic(self, arg_s) 1180 else: 1181 magic_args = self.var_expand(magic_args,1) -> 1182 return fn(magic_args) 1183 1184 def ipalias(self,arg_s): /usr/lib/pymodules/python2.5/IPython/Magic.pyc in magic_time(self, parameter_s) 1969 else: 1970 st = clk() -> 1971 exec code in glob 1972 end = clk() 1973 out = None /home/jaakko/Desktop/<timed exec> in <module>() AttributeError: 'EllipticCurve_generic' object has no attribute 'integral_model' On Dec 7, 1:42 am, Yann <yannlaiglecha...@gmail.com> wrote: > From the example you give: > > 2x**3+385x**2+256x-58195=3y**2 , over the rational field > > it's not direct because sage does not handle general cubic equation > yet. > In sage, let's define: > {{{ > sage: R.<x,y> = QQ[] > sage: P = 2*x**3 + 385*x**2 + 256*x - 58195 - 3*y**2}}} > > Given an equation > > A6 + A4 x + A3 y + A2 x**2 + A1 xy + A5 y**2 + A7 x**3 = 0. > > You can obtain do by hand the change of variables Q(x' , y' ) = P( - > x*A5*A7 , y * A7**2 * A5 ) / ( A5**3 * A7**4 ) > a simplified equation: > {{{ > sage: Q = P( x=-x*(-3)*2 , y=y*2**2*(-3) ) / ( (-3)**3*2**4 ) > sage: Q > -x^3 - 385/12*x^2 + y^2 - 32/9*x + 58195/432 > > }}} > > You can then define the elliptic curve and compute integral points > {{{ > sage: E = EllipticCurve(Q) > sage: time pts = E.integral_model().integral_points() > CPU times: user 2.74 s, sys: 0.02 s, total: 2.76 s > Wall time: 7.58 s > > }}} > > at this point, you need to come back to the original curve, removing > solutions not integral after the inverse change of variables > > {{{ > sage: x_coords = [ x/6 for x,y,z in pts if 6.divides(ZZ(x)) ] > sage: x_coords > [-191, -157, -67, -49, -23, -19, 19, 23, 61, 103, 521, 817, 3857, > 10687, 276251] > > }}} > > On Dec 6, 6:41 pm, Jaakko Seppälä <jaakko.j.sepp...@gmail.com> wrote: > > > I read > > fromhttp://mathoverflow.net/questions/7907/elliptic-curves-integer-points > > than Sage can determine the integer points of an elliptic curve. What > > commands will do the trick? -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org