>From the example you give: 2x**3+385x**2+256x-58195=3y**2 , over the rational field
it's not direct because sage does not handle general cubic equation yet. In sage, let's define: {{{ sage: R.<x,y> = QQ[] sage: P = 2*x**3 + 385*x**2 + 256*x - 58195 - 3*y**2 }}} Given an equation A6 + A4 x + A3 y + A2 x**2 + A1 xy + A5 y**2 + A7 x**3 = 0. You can obtain do by hand the change of variables Q(x' , y' ) = P( - x*A5*A7 , y * A7**2 * A5 ) / ( A5**3 * A7**4 ) a simplified equation: {{{ sage: Q = P( x=-x*(-3)*2 , y=y*2**2*(-3) ) / ( (-3)**3*2**4 ) sage: Q -x^3 - 385/12*x^2 + y^2 - 32/9*x + 58195/432 }}} You can then define the elliptic curve and compute integral points {{{ sage: E = EllipticCurve(Q) sage: time pts = E.integral_model().integral_points() CPU times: user 2.74 s, sys: 0.02 s, total: 2.76 s Wall time: 7.58 s }}} at this point, you need to come back to the original curve, removing solutions not integral after the inverse change of variables {{{ sage: x_coords = [ x/6 for x,y,z in pts if 6.divides(ZZ(x)) ] sage: x_coords [-191, -157, -67, -49, -23, -19, 19, 23, 61, 103, 521, 817, 3857, 10687, 276251] }}} On Dec 6, 6:41 pm, Jaakko Seppälä <jaakko.j.sepp...@gmail.com> wrote: > I read > fromhttp://mathoverflow.net/questions/7907/elliptic-curves-integer-points > than Sage can determine the integer points of an elliptic curve. What > commands will do the trick? -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org