>From the example you give:

2x**3+385x**2+256x-58195=3y**2  , over the rational field

it's not direct because sage does not handle general cubic equation
yet.
In sage, let's define:
{{{
sage: R.<x,y> = QQ[]
sage: P = 2*x**3 + 385*x**2 + 256*x - 58195 - 3*y**2
}}}
Given an equation

A6 + A4 x + A3 y + A2 x**2 + A1 xy + A5 y**2 + A7 x**3 = 0.

You can obtain do by hand the change of variables Q(x' , y' ) = P( -
x*A5*A7 , y * A7**2 * A5 ) / ( A5**3 * A7**4 )
a simplified equation:
{{{
sage: Q = P( x=-x*(-3)*2 , y=y*2**2*(-3) ) / ( (-3)**3*2**4 )
sage: Q
-x^3 - 385/12*x^2 + y^2 - 32/9*x + 58195/432
}}}

You can then define the elliptic curve and compute integral points
{{{
sage: E = EllipticCurve(Q)
sage: time pts = E.integral_model().integral_points()
CPU times: user 2.74 s, sys: 0.02 s, total: 2.76 s
Wall time: 7.58 s
}}}

at this point, you need to come back to the original curve, removing
solutions not integral after the inverse change of variables

{{{
sage: x_coords = [ x/6 for x,y,z in pts if 6.divides(ZZ(x)) ]
sage: x_coords
[-191, -157, -67, -49, -23, -19, 19, 23, 61, 103, 521, 817, 3857,
10687, 276251]
}}}

On Dec 6, 6:41 pm, Jaakko Seppälä <jaakko.j.sepp...@gmail.com> wrote:
> I read 
> fromhttp://mathoverflow.net/questions/7907/elliptic-curves-integer-points
> than Sage can determine the integer points of an elliptic curve. What
> commands will do the trick?

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to