For Int((cos(t)^n+sin(t)^n)^(1/2),t = 0 ... Pi) that is Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]
1) n=4 Maple gives EllipticE(I)*sqrt(2) vs Mathemtica's 2*EllipticE[1/2] and 2) n=6 Maple gives EllipticE(sqrt(3)*I) vs Mathematica's 2 EllipticE[3/4] In both cases above Maple has explicit reference to the imaginary part I and Mathematica doesn't ... What Sage does on that ? Thanks, --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---