For
Int((cos(t)^n+sin(t)^n)^(1/2),t = 0 ... Pi)
that is
Integrate[Sqrt[Cos[t]^n + Sin[t]^n], {t, 0, Pi}]

1) n=4
Maple gives
EllipticE(I)*sqrt(2)
vs
Mathemtica's
2*EllipticE[1/2]

and
2) n=6
Maple gives
 EllipticE(sqrt(3)*I)
vs
Mathematica's
 2 EllipticE[3/4]

In both cases above Maple has explicit  reference to the  imaginary
part I and Mathematica doesn't ...

What Sage does on that ?

Thanks,

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to