Thank you very much, for the useful information ! Where can I find a complete and good documentation about Sage, better then the tutorial or the reference ?
Thank you again. On Mar 10, 8:00 pm, Jason Grout <jason-s...@creativetrax.com> wrote: > alex wrote: > > This seems to work: > > given a symbolic matrix P of dimension 2x2 do: > > > EVECP = maxima(P).eigenvectors() > > EVEC1 = EVECP.part(2) > > (first eigenvector) > > EVEC2 = EVECP.part(3) > > (second eigenvector) > > EIGENVECT = (matrix(SR, 2,2, [EVEC1.sage(), EVEC2.sage()])).transpose > > () (matrix of eigenvectors) > > > for the inverse: > > EIGENVECTINV = EIGENVECT.inverse() > > (EIGENVECTINV * EIGENVECT).simplify_rational() > > gives identity matrix. > > > the eigenvalues of P with multiplicity (!) can be read with > > EVECP.part(1) > > > Is this correct ? > > > Is there a way to symbolically compute the matrix exponential > > directly ? > > THX ! > > There should be a matrix exponential function: > > sage: var('a,b,c,d') > (a, b, c, d) > sage: A=matrix([[a,0],[0,d]]) > sage: A.exp() > > [e^a 0] > [ 0 e^d] > sage: A=matrix([[a,2],[0,d]]) > sage: A.exp() > > [ e^a (2*e^d - 2*e^a)/(d - a)] > [ 0 e^d] > > Jason --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---